參考文獻 |
[1] J. M. Senior, Optical fiber communications: principles and practices, second ed., Prentice Hall: New York, 1992.
[2] K.-I. Suto, H. Yoshinaga, T. Kokubun, K. Kikushima, and E. Yoneda, “Intermodulation distortion in 48 TV channel FM-FDM optical transmission,” IEEE Photon. Technol. Lett. 3(9), 844-846 (1991).
[3] A. Billings, Optics optoelectronics and photonics engineering principles and applications, Prentice Hall: New York, 1993.
[4] R. G. Hunsperger, Photonic devices and systems, Marcel Dekker: New York, 1994.
[5] E. Uiga, Optoelectronics, Prentice Hall: Upper Saddle River, N.J., 270, 1995.
[6] C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60(13), 1538-1540 (1992).
[7] G. L. Li, and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. of Lightwave Technol. 21(9), 2010-2030 (2003).
[8] W. Wang, Y. Shi, D. J. Olson, W. Lin, and J. H Bechtel, “Push-pull poled polymer Mach-Zehnder modulators with a single microstrip line electrode,” IEEE Photon. Technol. Lett. 11(1), 51-53 (1999).
[9] J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. T. Chen, “Polymer-based electrooptical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16(1), 96-98 (2004).
[10] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 4-13, 1988.
[11] G. T. Sincerbox and J. C. Gordon II, “Small fast large-aperture light modulator using attenuated total reflection,” Appl. Opt. 20(8), 1491-1494 (1981)
[12] O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500-2502 (1992).
[13] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927-1930 (1981).
[14] L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59(9), 3289-3291 (1986).
[15] D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, “Optical field enhancement by long-range surface plasma waves,” Appl. Opt. 21(22), 3993-3995 (1982)
[16] J. S. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27(21), 4587-4590 (1988).
[17] C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34(6), 946-949 (1995).
[18] Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, “Low voltage electro-optic polymer light modulator using attenuated total internal reflection,” Opt. Laser Technol. 33, 417-420 (2001).
[19] S.-S. Sun, S. Maaref, E. Alam, Y. Wang, Z. Fan, M. Bahoura, P. Higgins, and C. E. Bonner, “Recent development of crosslinked NLO polymers for large bandwidth electro-optical modulations,” Proc. SPIE 4580, 297-308 (2001).
[20] J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197-206 (2003).
[21] J. Davies, Surface analytical techniques for probing biomaterial processes, CRC press: Boca Raton, Chap. 3, 67-87, 1996.
[22] T.-A. Chen, Alex K.-Y, Jen, and Y. Cai, “Facile approach to nonlinear optical side-chain aromatic polymides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 117, 7295-7296 (1995).
[23] T.-A. Chen, Alex K.–Y, Jen, and Y. Cai, “Two-step synthesis of side-chain aromatic polyimides for second-order nonlinear optics,” Macromolec. 29, 535-539 (1996).
[24] G. Khanarian, J. Sounik, D. Allen, S. F. Shu, C. Walton, H. Goldberg, and J. B. Stamatoff, “Electro-optic characterization of nonlinear-optical guest-host films and polymers,” J. Opt. Soc. Am. B 13(9), 1927-1934 (1996).
[25] R. F. Wallis and G. I. Stegeman, Electromagnetic Surface Excitations, Springer-Verlag: Berlin, 2-7, 1985.
[26] F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, Prentice-Hall: Englewood Cliffs, New Jersey, Chap. 23, 472-488, 1987.
[27] R. D. Guenther, Modern Optics, John Wiley and Sons: New York, 67-73, 1990.
[28] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[29] H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films 9, Academic: New York, 145, 1977.
[30] K. Welford, “The method of attenuated total reflection,” in Surface plasmon-polaritations, IOP short meeting series 9, 25-99 (1988).
[31] E. N. Economou, “Surface plasmons in thin films,” Phy. Rev. 182(2), 539-554 (1969).
[32] J.-J. Chyou, S.-J. Chen, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, and C.-F. Shu, “Fabrication and metrology of EO polymer light modulator based on waveguide-coupled surface plasmon resonance,” Opt. Eng. 44(3), 034001-1-034001-7 (2005).
[33] P. Yeh, Introduction to photorefractive nonlinear optics, John Wiley and Sons: New York, Chap. 12, 389, 1993.
[34] W. H. G. Horsthuis and G. J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides” Appl. Phys. Lett., 55(7), 616-618 (1989).
[35] Y. Jiang, Z. Cao, Q. Shen, X. Dou, Y. Chen, “Improved attenuated-total-reflection technique for measuring the electro-optic coefficients of nonlinear optical polymers,” J. Opt. Soc. Am. B. 17(5), 805-808 (2000).
[36] D. Haas, H. Yoon, H.-T. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator; materials and fabrication,” Proc. SPIE 1147, 222-232 (1989).
[37] W. H. Steier, A. Chen, S.-S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, and B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487-506 (1999).
[38] V. Dentan, Y. Levy, M. Dumont, P. Robin and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69(5,6), 379-383 (1989).
[39] C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734-1736 (1990).
[40] S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate”, IEEE J. Quantum Electron. 23(12), 2116-2120 (1987).
[41] B. E. A, Saleh and M. C. Teich, Fundamentals of photonics, John Wiley and Sons: New York, Chap. 18, 699, 1991.
[42] E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers”, IEEE J. Quantum Electron. 27(3), 778-787 (1991).
[43] E. Kretschman and H. Raether, Z. Naturforsch., A: Phys. Sci. 23a, 2135-2136 (1968).
[44] Otto, Z. Phys. 216, 398-410(1968).
[45] A. Driessen, H. M. M. Klein Koerkamp, and Th. J. A. Popma, “Novel integrated optic intensity modulator based on mode coupling,” Fiber Integr. Opt. 13, 445-461 (1994).
[46] L. A. Hornak, Polymer for lightwave and Integrated optics: technology and appllications, Marcel-Dekker: New York, 280, 1992.
[47] D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer system,” Chem. Rev. 94, 31-75 (1994).
[48] T. C. Kowalczyk, T. Z. Kosc, K. D. Singer, A. J. Beuhler, D. A. Wargowski, P. A. Cahill, C.H.Seager, M. B. Meinhardt, and S. Ermer, “Crosslinked polyimide electro-optic meaterials,” J. Appl. Phys. 78(10), 5876-5883 (1995).
[49] S.-S. Lee, S. M. Garner, V. Chuyanov, H. Zhang, W. H. Steier, F. Wang, L. R. Dalton, A. H. Udupa, and H. R. Fetterman, “Optical intensity modulator based on a novel electrooptic polymer incorporating a high chromophore,” IEEE J. Quantum Electron. 36(5), 527-532 (2000).
[50] Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[51] X. Zhang, X. Lu, L. Wu, and R. T. Chen, “Contact poling of the nonlinear optical film for polymer-based electro-optic modulator,” Proc. SPIE 4653, 87-95 (2002).
[52] J. A. Giacometti, S. Fedosov, and M. M. Costa, “Corona charging of polymers: recent advances on constant current charging,” Brazilian Journal of Physics 29(2), 269-279 (1999).
[53] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983).
[54] J. M. Phelps and D. M. Taylor, “Determining the relative permittivity and thickness of a lossless dielectric overlayer on a metal film using optically excited surface plasmon polaritons,” J. Phys. D: Appl. Phys. 29, 1080-1087 (1996).
[55] H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82(5,6), 425-432 (1991).
[56] K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130, 260-266 (1996).
[57] K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys. 42, 242-246 (1995).
[58] T. M. Chinowsky and S. S. Yee, “Quantifying the information content of surface plasmon resonance reflection spectra,” Sens. Actuators, B 51, 321-330 (1998).
[59] T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators, B 54, 89-97 (1999).
[60] W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71(2), 189-191 (1981).
[61] J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, “Multi-experiment linear data analysis for ATR biosensors,” Proc. SPIE 4819, 175-184 (2002).
[62] P. Yeh, Optical waves in layered media, John Wiley and Sons: New York, Chap. 5, 102-110, 1988.
[63] R. H. Myers and J. S. Milton, A first course in the theory of linear statistical models, PWS-KENT Publications: Boston, Chap. 3, 83-87, 1991.
[64] U. Schroder, “The Influence of thin metallic coatings on the dispersion of surface plasma-oscillations in gold-silver film systems,” Surf. Sci. 102(1), 118-130 (1981)
[65] K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, “Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy,” Anal. Chim. Acta 489, 191-198 (2003)
[66] J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, “An angular-interrogation attenuated-total-reflection metrology system for plasmonic sensors,” Appl. Opt. 44(29), 6155-6162, (2005).
[67] E. Bennett, R. L. Peck, D. K. Burge, and J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351-3360 (1969).
[68] N. Mehan and A. Mansingh, “Study of tarnished films formed on silver by exposure to H2S with the surface-plasmon resonance technique,” Appl. Opt. 39(28), 5214-5220 (2000). |