博碩士論文 90323058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.12.36.175
姓名 何文城(Wen-Cheng Ho)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 A533與A508鋼材疲勞裂縫成長特性研究
(Study on the Fatigue Crack Growth Properties of A533 and A508 Steels)
相關論文
★ 反應性磁控法濺鍍氮化鈦鎢薄膜磨潤行為研究★ 應用田口方法於發光二極體導線架 射出成型參數最佳化之研究
★ 應用田口方法於半導體晶圓盒製造最佳化★ 虛擬護理數位診斷模擬系統開發之研究
★ 虛擬射出成型試驗機之研究★ 藥柱疲勞特性與壽限評估模式之研究
★ 網際網路虛擬護理照護數位模擬系統之研究★ 虛擬實境應用於手部復健與電動輪椅模擬系統之研發
★ 縮尺發動機振動與疲勞壽限之研究★ 應用駕駛模擬器探討震動防撞警示系統之技術開發與研究
★ 虛擬實境應用於坐姿平衡訓練系統之研究★ 符合SCORM規範之射出成型數位學習系統建置與研究
★ 虛擬場景模組化與自動編輯系統開發之研究★ 虛擬內視鏡基礎技術訓練系統學習轉移之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討A533-B和A508鋼材分別在常溫和高溫大氣環境中的疲勞裂縫成長特性。A533-B鋼材主要是在室溫下進行破壞韌性和疲勞裂縫成長速率測試,以研究鋼板滾軋加工方位、平均應力效應及環境溫度效應對A533-B破裂性質的影響。A508鋼材則是探討其鍛造加工方位、硫含量對高溫疲勞裂縫成長速率的影響,並進一步測試裂縫瑕疵在A508鋼材與Alloy 82或Alloy 52銲材之銲道交界附近的裂縫成長速率。
硫含量0.035 wt%之A533-B鋼材實驗結果顯示,裂縫平行滾軋方向(平行方位)的破壞韌性只有垂直滾軋方向(垂直方位)的38.8 %,平行方位裂縫成長速率對應力強度因子幅(DK)變化有較敏銳的反應,且其裂縫成長速率也比較快。在平均應力效應方面,以應力比0.05的疲勞裂縫成長速率為比較基準之下,應力比0.2約為應力比0.05的1.2倍,應力比0.4和0.6則都是約為1.35倍,故當應力比提高到0.6時,其平均應力效應明顯下降。另外,研究結果顯示室溫與300℃的裂縫成長速率極為接近,無明顯的溫度效應。
A508鋼材於300℃空氣中進行疲勞裂縫成長速率實驗結果顯示,在裂縫平行鍛造方向的條件下,高硫含量(0.015 wt% S)鋼材之裂縫成長速率約為低硫含量(0.005 wt% S)鋼材的1.23~1.53倍;而鍛造方位對疲勞裂縫成長速率則無顯著的影響。另針對A508異材金屬銲道以固定DK施力模式之疲勞裂縫成長速率測試中,銲道與母材交界附近呈現4個具有不同裂縫成長速率的區域,分別為銲材熔融區(Filler Fusion Zone)、稀釋區(Dilution Zone)、熱影響區(HAZ)及A508母材區,其中稀釋區的裂縫成長速率最緩慢。
摘要(英) The purpose of this thesis was to investigate the fatigue crack growth behavior of A533-B steel and A508 steel in air at room temperature and 300℃. Fracture toughness and fatigue crack growth rate tests were conducted on A533-B steel specimens with different orientations under various mean stresses. Fatigue crack growth rate tests were also performed on A508 steels with different specimen orientations and sulfur contents. Efforts were focused on the fatigue crack growth rate measurements of dissimilar metal weldments, Alloy82-A508 and Alloy 52-A508, under a nominally constant DK loading control.
The experimental results of A533-B steel with sulfur content 0.035 wt% showed that the fracture toughness of the specimen with a crack in the rolling direction is only 38.8% of that perpendicular to the rolling direction. The fatigue crack growth rate is faster in the rolling direction than that in a direction perpendicular to the rolling direction. For the mean stress effect, the fatigue crack growth rate at a stress ratio of 0.2 was 1.2 times that at a stress ratio of 0.05, while the crack growth rates at stress ratios 0.4 and 0.6 were 1.35 times that at a stress ratio of 0.05. Therefore, the mean stress effects became saturated when the stress ratio was increased up to 0.6. In addition, the fatigue crack growth rates at room temperature and 300℃ were almost identical. Within the test temperatures, no significant temperature effects on the fatigue crack growth rate were observed for A533-B steel.
The fatigue crack growth rate for A508 steel with sulfur content 0.015 wt% was 1.23~1.53 times that with sulfur content 0.005 wt% at 300℃. Little or no significant specimen orientation effect on the fatigue crack growth rate was observed. For the dissimilar metal weldment tested under the nominally constant DK loading control, four distinct crack growth rates were identified on the a-N curve, which corresponded to fusion zone, dilution zone, heat-affected zone and A508 base metal, respectively. Among these four zones, the dilution zone showed the slowest fatigue crack growth rate.
關鍵字(中) ★ A508鋼材
★ A533-B鋼材
★ 破壞韌性
★ 疲勞裂縫成長速率
★ 異材金屬銲道
關鍵字(英) ★ A508 steel
★ A533-B steel
★ Fracture toughness
★ Fatigue crack growth rate
★ Dissimilar metal weldment
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 前言 1
1-1 研究背景及目的 1
1-2 本論文架構 3
第二章 理論說明 5
2-1 線彈性破壞力學 5
2-2 Griffith脆性破裂理論 6
2-3 彈塑性破壞力學 7
2-3-1 J積分及其守恆性 8
2-3-2 彈塑性裂縫尖端應力場與J積分的關係 9
2-4 疲勞裂縫成長 10
第三章 實驗方法與步驟 21
3-1 緊湊拉伸(CT)試片製作 21
3-1-1 A533-B材質CT試片 21
3-1-2 A508材質CT試片 22
3-1-3 A508銲件CT試片 22
3-1-4 CT試片表面研磨處理 23
3-2 實驗設備 23
3-2-1 材料動態試驗機 23
3-2-2 裂縫長度量測儀器 24
3-2-3 掃瞄式電子顯微鏡 25
3-3 破壞韌性試驗 25
3-4 疲勞裂縫成長試驗 26
第四章 結果與討論 35
4-1 A533-B鋼材疲勞裂縫成長測試結果 35
4-1-1 鋼板滾軋方位對常溫破壞韌性的影響 35
4-1-2 平均應力效應及鋼板滾軋方位對常溫疲勞裂縫成長速率的影響 37
4-1-3 溫度效應對疲勞裂縫成長速率的影響 39
4-2 硫含量及鍛造方位對A508鋼材高溫疲勞裂縫成長速率的影響 39
4-3 A508異材銲道在固定DK施力模式之高溫疲勞裂縫成長測試結果 40
4-3-1 固定DK施力模式下裂縫長度對高溫疲勞裂縫成長速率的影響 40
4-3-2 A508異材銲道與母材之高溫疲勞裂縫成長速率差異比較 42
4-4 破斷面觀察 43
第五章 結論 63
參考文獻 65
參考文獻 1. V. N. Shah, et al., Residual Life Assessment of Major Light Water Reactor Components -Overview, NUREG/CR-4731, Vol. 1, 1987, pp. 12-31.
2. V. N. Shah, et al., Residual Life Assessment of Major Light Water Reactor Components -Overview, NUREG/CR-4731, Vol. 1, 1987, pp. 101-107.
3. V. N. Shah, P. E. Macdonald, Aging and Life Extension of Major Light Water Reactor Components, Elsevier Science Publishers, 1993.
4. R. L. Jones, Proceedings of the Second International Atomic Energy Agency Specialist’s Meeting on Subcritical Crack Growth, NUREG/CP-0067, Vol. 1, 1986, pp. 1-8.
5. B. M. Gordon, D. E. Delwiche, and G. M. Gordon, “Service Experience of BWR Pressure Vessels”, Performance and Evaluation of LWR PV, PVP Vol. 119, ASME, 1987, pp. 9-17.
6. K. H. Luk, Boiling-Water Reactor Internals Aging Degradation Study, NUREG/CR-5754, ORNL, 1993, pp. 21-42.
7. K. H. Luk, Pressurized-Water Reactor Internals Aging Degradation Study, NUREG/CR- 6048, ORNL, 1993, pp. 29-46.
8. K. E. Stahlkopf, J. D. Gilman, T. U. Marston, and T. J. Griesbach, “A Review of Materials and Fabrication Methods used in Light Water Reactor Pressure Vessels” , Performance and Evaluation of LWR PV, PVP Vol. 119, ASME, 1987, pp. 1-7.
9. P. K. Liaw, H. Wang, L. Jiang, B. Yang, J. Y. Huang, R. C. Kuo, and J. G. Huang, “Thermography Detection of Fatigue Damage of Pressure Vessel Steels at 1,000 Hz and 20 Hz”, Scripta Materialia, Vol. 42, 2000, pp. 389-395.
10. C. Y. Chen, J. Y. Huang, J. J. Yeh, R. C. Kuo, J. R. Hwang, and J. G. Huang, “Microstructural Evaluation of Fatigue Damage in SA533-B1 and Type 316L Stainless Steels”, Journal of Materials Science. Vol. 38, 2003, pp. 817-822.
11. J. Y. Huang, R. Z. Li, K. F. Chien, R. C. Kuo, P. K. Liaw, B. Yang, and J. G. Huang, “Fatigue Behavior of SA533-B1 Steels”, ASTM Fatigue and Fracture Mechanics, Vol. 32, STP 1406, 2001, pp.105-121.
12. 郭榮卿等, “反應爐壓力槽鋼材疲勞行為偵測與評估”, 台灣電力股份有限公司第一次期中報告, 1999.
13. 郭榮卿等, “反應爐壓力槽鋼材疲勞行為偵測與評估”, 台灣電力股份有限公司第二次期中報告, 2000.
14. 郭榮卿等, “反應爐壓力槽鋼材疲勞行為偵測與評估”, 台灣電力股份有限公司期末報告, 2001.
15. 黃俊仁, 陳奎澧, 馮君平, 黃俊源, 郭榮卿等, “SA533B1壓力槽鋼材之疲勞裂縫閉合與裂縫成長研究”, 第十九屆機械工程研討會, 11月, 2002.
16. 許育銓, 黃俊仁, 馮君平, 黃俊源, “反應器壓力槽疲勞壽限評估模式之研究”, 中華民國第十一屆國防科技學術研討會, 固力與設計組, C-02, 桃園縣, 11月, 2002.
17. D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, 1986.
18. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edition, CRC Press, 2005.
19. G. R. Irwin, “Analysis of Stresses and Strains near the End of a Crack Traversing a Plate”, Journal of Applied Mechanics, Vol. 24, 1957, pp. 361-364.
20. R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, Metal Fatigue in Engineering, 2nd edition, John Wiley & Sons, 2001, pp. 122-176.
21. E399-90, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, Vol. 03.01, West Conshohocken, PA, 1991 (Reapproved 1997).
22. A. A. Griffith, “The Phenomena of Rupture and Flow in Solids”, Philosophical Transaction, Royal Society of London, A 221, 1920, pp.163-197.
23. J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
24. J. W. Hutchinson, “Singular Behavior at the End of a Tensile Crack in a Hardening Material”, Journal of Mechanics and Physics of Solids, Vol.16, 1968, pp. 13-31.
25. J. R. Rice and G. F. Rosengren, “Plane Strain Deformation Near a Crack in a Power Law Hardening Material”, Journal of the Mechanics and Physics of Solids, Vol.16, 1968, pp. 1-12.
26. J. A. Begley and J. D. Landes, “The J-Integral as a Fracture Criterion”, Fracture Toughness, Part II, ASTM STP 514, Philadelphia, 1972, pp. 1-20.
27. J. D. Landes and J. A. Begley, “The Effect of Specimen Geometry Criterion on JIC”, Fracture Toughness, Part II, ASTM STP 514, Philadelphia, 1972, pp. 24-39.
28. E 647-00, “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, Annual Book of ASTM Standards, Vol. 03.01, West Conshohocken, PA, 2001.
29. P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Law”, Transaction ASME, Journal of Basic Engineering, Vol.85, 1963, pp.528-534.
30. W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
31. W. Elber, “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
32. S. Suresh and R. O. Ritchie, “Propagation of Short Fatigue Cracks”, International Metals Reviews, Vol. 29, 1984, pp. 445-476.
33. S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
34. R. G. Forman, V. E. Kearney, and R. M. Engle, “Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures”, Transaction ASME, Journal of Basic Engineering, Vol. 89, No. 3, 1976, pp.459-464.
35. 台電/核研所核能發電廠技術發展專業, “反應爐壓力槽鋼材疲勞行為偵測與評估第一次進度報告”, 9月, 1998.
36. 黃俊源, “反應器壓力槽鋼材疲勞行為研究”, 國立中央大學機械工程研究所, 博士論文, 6月, 2003.
37. E 813-89, “Standard Test Method for JIC, A Measure of Fracture Toughness”, Annual Book of ASTM Standards, Vol. 03.01, Philadelphia, PA, 1990.
38. 黃俊源等, “核電廠反應器穿越管合金A152/A52特性研究及運轉評估”, 台灣電力股份有限公司第一次期中報告, 8月, 2007.
指導教授 鄭銘章(Ming-Chang Jeng) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明