國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第一頁

所別:通訊工程學系碩士班 乙組 科目:工程數學

1. (10%) Consider the system of linear equations Ax = b where

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & k+1 & 6 \\ -1 & 3 & k-2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ 8 \\ -1 \end{bmatrix}$$

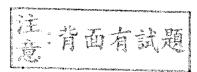
Determine the values of k such that:

- (a) The system has infinitely many solutions.
- (b) The system has a unique solution.
- (c) The system has no solution.
- 2. (10 %) Let T: $\mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ be the linear transformation given by

$$\mathbf{T}(\mathbf{A}) = \mathbf{A} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{A}$$

Find a basis for the kernel (nullspace) and a basis for the image of T.

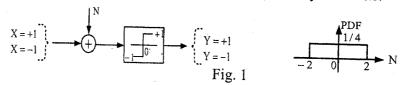
- 3. (10 %) Let **A** be the matrix $\mathbf{A} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}$
 - (a) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
 - (b) Compute A^{100} .
 - (c) Find a square matrix **B** such that $\mathbf{B}^5 = \mathbf{A}$.
- 4. Give the correct choice of the following statements.
- (a) (5 %) Let V and W be subspace of \mathbb{R}^5 such that $\dim(V) = 4$ and $\dim(W) = 2$. Then the possible dimension for $V \cap W$ is
 - (i) 0,1 (ii) 1,2 (iii) 2,3 (iv) none of above
- (b) (5%) If $\{u_1, \dots, u_m\} \subset \mathbb{R}^4$ is linear independent and $\{v_1, \dots, v_l\}$ spans \mathbb{R}^4 , then
 - (i) $l, m \ge 4$ (ii) $l, m \le 4$ (iii) $l \ge 4, m \le 4$ (iv) $l \le 4, m \ge 4$ (v) none of the above
- (c) (5%) If 3 is an eigenvalue of A, then $A^2 4A + 3I$ is invertible (i) True (ii) False (答錯倒扣 5%)
- (d) (5%) The matrix $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are similar. (i) True (ii) False (答錯倒扣 5%)
- 5. In Fig 1, the random variable X has two possible values +1 and -1, and X is added by a uniform random variable N over (-2,2) to form a new variable. The value of the variable Y is decided by passing the new variable through a sign-function: $\{Y|Y=+1 \text{ if } X+N\geq 0 \text{ and } Y=-1 \text{ if } X+N<0\}$. Assume that the occurrence probabilities of X=+1 and X=-1 are 0.6 and 0.4, respectively.



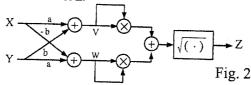
國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第之頁

所別:通訊工程學系碩士班 乙組 科目:工程數學

- (a) (6%) What is the probability of X=-1 when Y=+1?
- (b) (6%) To reduce the probability in (1), we enlarge the amplitude of X more than unity. What is the minimal amplitude of X such that the probability is below 0.1?



- 6. In Fig. 2, X and Y are two i.i.d. Gaussian random variables, $N(0, \sigma^2)$. V and W are obtained by a linear combination of X and Y. Z is obtained by passing V and W through square-law devices, adder, and a square-root device.
 - (a) (7%) Prove that V and W are statistically independent.
 - (b) (7%) Find the PDF of Z.



7. A random variable X is defined by

$$f_{x}(x) = 4e^{-2|X|}$$

The random variable Y is related to X by Y=2X-3.

- (a) (6%) Use the characteristic function to determine E[X] and $E[X^2]$.
- (b) (6%) Find E[Y], E[Y²], and σ_Y^2 .
- 8. Given a random variable X with the PDF

$$f_X(x) = \frac{2}{\sqrt{2\pi}} e^{-x^2/2} u(x)$$

where u(x) is the unit step function, $\{u(x)|u(x)=1 \text{ if } x\geq 0 \text{ and } u(x)=0 \text{ if } x<0\}$, and the random variable $Y=e^{-x^2}$. We use $\hat{Y}=aX+b$ to approach Y, where a and b are two constants. Define the mean squared error (MSE) as

$$e_{MSE} = E[(Y - \hat{Y})^2] = E[(Y - aX - b)^2].$$

Then we can treat e_{MSE} as a quadratic function of a and b.

- (1) (4%) By taking the derivative of e_{MSE} with respect to a and b, find the necessary condition to minimize e_{MSE} .
- (2) (8%) Find the values of a and b for the best estimate $\hat{Y} = aX + b$. [Note: You can use the numerical approximation $\sqrt{2\pi} \approx 2.5$.]

