V.

國立中央大學95學年度碩士班考試入學試題卷 共 之 頁 第 / 頁

所別:<u>電機工程學系碩士班</u> 甲組(一般生) 科目:<u>計算機概論</u> (學位在職生)

- 1. Explain and compare the primary memory unit and the secondary memory unit of a computer. (5%)
- 2. Draw flow-chart diagrams for the **while** statement and the **do/while** statement and explain the difference between them. (5%)
- 3. List the computer data hierarchy from bit to database. (5%)

5. What does this program segment do? (5%) float data; for (int a = 1; a <= 5; a++) {
 data = (a + 2)/a; cout << "(" << "a+2)" << "/" << "a"; cout << "=" << data << endl;
}

6. Show the results of running this program. (5%)

#include <iostream>
using namespace std;
unsigned long my_func(unsigned long);
int main()

{
 unsigned long result, number = 5;
 result = my_func(number);
 cout << "My function(" << number << ") = "<< result << endl;
 return 0;
}

unsigned long my_func(unsigned long n)

{
 if (n == 0 || n == 1)
 return n;
 else
 return my_func(n-1) + 3*my_func(n-2);
}

7. Find and correct the errors of the following code. (5%) int x = 7, y = 3;
if (x > 5)
if (y > 5)
cout << "x and y are >5." << endl;
else
cout << "x is <=5." << endl;

注:背面有試題

國立中央大學95學年度碩士班考試入學試題卷 共___頁 第二_頁

所別:<u>電機工程學系碩士班 甲組(一般生)</u>科目:<u>計算機概論</u> (學位在職生)

8. Show the results of running this program. (10%)

```
#include <iostream>
 using namespace std;
 void f1(void);
 void f2(void);
 int x = 9;
 int main()
 {
   int x = 3;
   cout \leq "Initially, x =" \leq x \leq endl;
     int x = 7;
     cout << "Now, x = " << x << endl:
   f1();
   f2();
   f1();
   f2();
   f1();
   f2();
   cout << "Finally, x = " << x << endl;
   cout << "And here, x = " <<::x << endl;
   return 0;
void f1()
 int x = 5;
 x^* = 2;
 cout << "During f1, x = " << x << endl;
void f2()
static int x = 3;
x^* = 2;
 cout \ll "During f2, x =" \ll x \llendl;
```

- 9. Write a C/C++ function which can separate a five-digit number by three spaces for each of the two consecutive digits. For example, if the number inputted is 12345, the function output is "1 2 3 4 5". (5%)
- 10. Write a C/C++ function which can find all the prime numbers between 1 and 300. (5%)
- 11. A right triangle having three integer sides is called a Pythagorean triple. These three sides (a,b,c) in such triangle must satisfy $c^2 = a^2 + b^2$. Please write a C/C++ program which can print out all the sets (a,b,c) with $c \le 1000$. Note that side b must be equal or greater than side a for all the sets. (10%)
 - a b c 3 4 5 5 12 13

所別:<u>電機工程學系碩士班 甲組(一般生)</u>科目:<u>計算機概論</u> (學位在職生)

12. What is the output by the following program? (5%)

```
int main()
{
   char s1[] = "Merry Christmas";
   char *sPtr2 = "Happy New Year";
   cout << s1 << setw( 4 ) << sPtr2;
   for ( int i = 0; ( s1[ i ] = sPtr2[ i ] ) != '\0'; i++ );
   cout << endl << s1 << setw( 4 ) << sPtr2 << endl;
   return 0;
} // end main</pre>
```

13. What is output by the following program segment? (5%)

```
int number = 39;
int *ptr = &number; // address of number is OF12BF7C
cout << number << " " << *ptr <<" " << ptr;</pre>
```

- 14. Create a class called **Complex** for performing arithmetic with complex numbers, that is, addition, subtraction, multiplication, and division for complex numbers. (10%)
- 15. Create a function called **Gaussian** to generate a Gaussian sequence with standard deviation equal to 1.0 and having the appointed length (number) N. (15%)