

國立中央大學94學年度碩士班考試入學試題卷 共/頁第/頁所別:電機工程學系碩士班乙組 科目:半導體元件

- 1. (a) (4%) 畫出 energy band diagram (E_C , E_V , E_F) for a Si p-n junction in thermal equilibrium \circ
 - (b) (8%) 請指出 Depletion (transition) region 與 neutral region. 並在 energy band diagram 上之適當位置用"電子及電洞"繪出其 Diffusion 的方向。
 (c) (4%) 最後說明原因在 thermal equilibrium 時 p-端的電洞不會因擴散原理(高濃度的往低濃度擴散)往 n-端擴散。
- 2. (16%) To measure the carrier concentration directly, the most common used method is the Hall Effect. Consider a p-type semiconductor sample (size is L×H×W), try to set up the measurement (畫出測量的接法與外加電壓電場磁場的方向等) and write the equations to obtain carrier concentration.
- 3. (18%) From Poisson's equation to derive (推導) electric-field distribution and find the maximum field in an abrupt p-n junction. Assumed the metallurgical junction is located at x = 0, the depletion region in p-side and n-side are $-x_p$ and x_n , respectively. Dielectric constant is ε_s .
- 4. (a) (10%) A silicon npn bipolar transistor is uniformly doped and biased in the forward-active region. The recutrat base width is $x_B = 0.8 \, \mu \text{m}$. The transistor doping concentrations are $N_E = 5 \times 10^{17} \, \text{cm}^{-3}$, $N_B = 10^{16} \, \text{cm}^{-3}$, and $N_C = 10^{15} \, \text{cm}^{-3}$. For $V_{BE} = 0.625 \, \text{V}$, determine n_B at x = 0 and p_E at x' = 0. Note that $n_i = 1.5 \times 10^{10} \, \text{cm}^{-3}$, $V_i = kT/q = 0.0259 \, \text{V}$, and $e^{24.131} = 3.02 \times 10^{10}$.

- (b) (10%) Consider a uniformly doped silicon bipolar transistor with a metallurgical base width of 0.5 μ m and a base doping of $N_B = 10^{16}$ cm⁻³. The punch-through voltage is to be $V_{pi} = 25$ V. Determine the collector doping and collector width to meet the punch-through voltage specification. Note that $\varepsilon_{Si} = 11.7 \times 8.85 \times 10^{14}$ F/cm.
- 5. (a) (10%) Consider an n⁺ polysilicon gate and a p-type silicon substrate doped to $N_a = 3 \times 10^{16}$ cm⁻³. Assume the fixed charge at the oxide-semiconductor interface is $Q_{ss} = 10^{11}$ cm⁻². Determine the work function difference ϕ_{ms} . Note that $n_i = 1.5 \times 10^{10}$ cm⁻³, the bandgap energy $E_g = 1.12$ eV, and the electron affinity $\chi = 4.01$ V.
 - (b) (10%) Follow (a). Determine the oxide thickness such thate the threshold voltage $V_{TN} = +0.6$ V. Note that $V_t = kT/q = 0.0259$ V, and $\ln(N_a/n_i) = 14.5086$.
- 6. (10%) Using superposition, the shift in the flat-band voltage ΔV_{FB} due to a fixed charge distribution $\rho(x) = (a \times x) \text{ C/cm}^3$ in the oxide can be given by $\Delta V_{FB} = f(\varepsilon_{ox}, t_{ox}, a)$. Please find the function $f(\varepsilon_{ox}, t_{ox}, a)$, which is a function of the oxide permittivity ε_{ox} , the oxide thickness t_{ox} , and the charge distribution coefficient a.