國立中央大學九十學年度碩士班研究生入學試題卷

所別: 電機工程學系第一7組 科目: 電子學 共 2 頁 第 1 頁

1. (15%)

Consider the BiCMOS circuit shown in Fig. 1. The bias voltage V_B is adjusted for a dc output voltage of 2 V and $R_B=1$ K Ω . The transistor parameters are: $\mu_a C_{ox}=60$ $\mu A/V^2$, W=40 μm , L=1 μm , and $V_{TH}=0.8$ V for MOSFET, and $I_S=10^{-16}$ A, $\beta_F=100$

- (a) Calculate the bias currents in both transistors, I_{D1} and I_{C1} .
- (b) Calculate the small-signal voltage gain ν_e/ν_e.
- (c) Find out the output resistance R_o .
- 2. (15%)

If the Early voltage $V_A = 100 \text{ V}$ and the common-emitter current gain $100 \le \beta_F \le \tilde{180}$, $V_{BE(on)} = 0.7 \text{ V}$

- (a) Please design the emitter-follower circuit (Fig. 2) (choose the appropriate values of R_1 , R_2 and β_F) such that the minimum current gain $A_i = i_o/i_o = 10$.
- (b) The input signal source is given by $v_r = V_m \sin w_0 t$, determine the maximum value of V_m that will produce a symmetrical sinusoidal output signal.

3. (25%)

Consider the circuit shown in Fig 3, assume MOSFETs are operating in saturation region and BJTs are operating in forward active region, $\mu_n C_{ox}$ W/L = 25 mA/V² for all MOSFETs, β = 100 for all BJTs, V_T = 25 mV, C_T = C_T =

(5%) (a) The small signal DC gain of amplifier 3.a and 3.b are A1 and A2 respectively, which statement is correct? (i) A1 > A2 (2) A1 < A2 (3) A1= A2 (答辑例和 2%) (5%) (b) The phase margin of amplifier 3.a and 3.b are ϕ 1 and ϕ 2 respectively, ϕ 2= 60°, which statement is correct? (1) ϕ 1 > ϕ 2 (2) ϕ 1 < ϕ 2 (3) ϕ 1 = ϕ 2 (答辑例和 2%)

(15%)(c) Assume amplifier 3.b has a 3dB bandwidth of 10kHz and a phase margin of 60°, inverting amplifier Ax has a 3dB bandwidth of 600 MHz and a small signal DC gain of -4, neglect the loading effect of Ax, what is the resulting 3dB bandwidth (5%) and phase margin (10%) of amplifier 3.c.

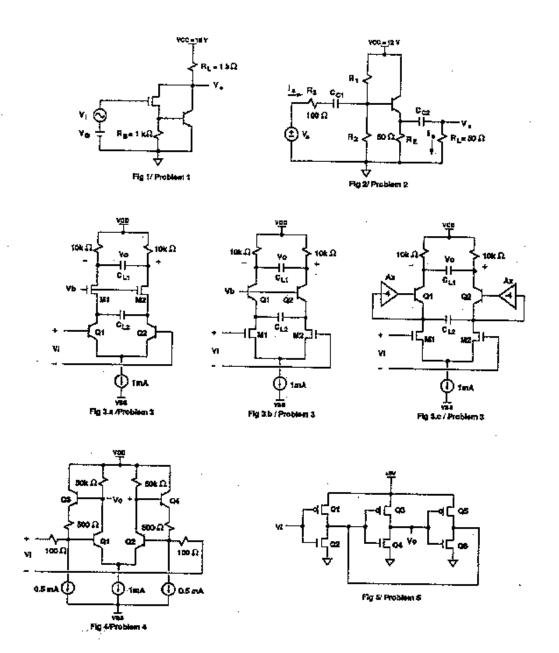
4. (15%)

Consider the circuit shown in Fig 4, assume $V_T = 25$ mV and $\beta = 100$ for Q1-Q4. (a) What kind of feedback topology (shunt-shunt, series-shunt, shunt-series, series-series) is utilized in this amplifier? (5%)

(b) Small signal DC gain Vo/Vi = ? (10%)

5, (15%)

In the CMOS bistable circuit shown, all transistors have |Vt| = 1 V and, with k = 1/2 k' (W/L), $k1=k2=k3=k4=2k5=2k6=200 \mu \text{ A/V}^2$, (a) Sketch and label the volatage transfer characteristic of the Q3-Q4 inverter. (5%)


國立中央大學九十學年度碩士班研究生入學試題卷 所別: 電機工程學系第子組 科目: 世子學 共2頁第2頁

- (b) Sketch and label the transfer characteristic Vo versus Vi. (5%)
- (c) Find the VIH and VIL. (5%)

6 (15%)

A particular two-input NOR gate has tPHL = 1 ns and tPLH = 3 ns. Five such gates, each with one input low, are connected in cascade to form a ring.

- (a) Find the oscillation frequency. (5%)
- (b) Two additional such gates, A and B, are connected to the ring, gate A inputs to the outputs of gates 1 and 3, and gate B inputs to the outputs of gates 1 and 4. Sketch and label the waveforms at all NOR gate outputs. (10%)

