參考文獻 |
1. Friedland, B. and Park, Y.-J. On adaptive friction compensation. IEEE Trans. Autom. Control, 1992, 37(10), 1609–1612.
2. Karnopp, D. Computer simulation of stick–slip friction in mechanical dynamic systems. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 1985, 107(1), 100–103.
3. Armstrong-Helouvry, B., Dupont, P., and Canudas de Wit, C. A survey of models,analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30(7), 1083–1138.
4. Dahl, P. R., A solid friction model, Technical report TOR-158(3107-18), the Aerospace Corporation, El Segundo, California, 1968.
5. Haessig Jr, D. A. and Friedland, B. On the modeling and simulation of friction. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 1991, 113(3), 354–362.
6. Canudas de Wit, C., Olsson, H., Astrom, K. J., and Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control, 1995, 40(3), 419–425.
7. Canudas de Wit, C. and Lischinsky, P. Adaptive friction compensation with partially known dy namic friction model. Int. J. Adaptive Control and Signal Processing, 1997, 11(1), 65–80.
8. Hensen, R. H. A., van de Molengraft, M. J. G., and Steinbuch, M. Frequency domain identification of dynamic friction model parameters. IEEE Trans. Control Syst. Technol., 2002, 10(2).
9. Papadopoulos, E. G. and Chasparis, G. C. Analysis and model-based control of servomechanisms with friction. J. Dynamic Syst., Measmt, and Control, 2004, 126(4), 911–915.
10. Marton, L. and Lantos, B. Modeling, identification, and compensation of stick–slip friction. IEEE Trans. Ind. Electronics, 2007, 54(1), 511–521.
11. Jatta, F., Legnani, G., and Visioli, A. Friction compensation in hybrid force/velocity control of industrial manipulators. IEEE Trans. Ind. Electronics, 2006, 53(2), 604–613.
12. Khayati, K., Bigras, P., and Dessaint, L.-A. A multistage position/force control for constrained robotic systems with friction: joint-space decomposition, linearization, and multiobjective observer/controller synthesis using LMI formalism. IEEE Trans. Ind. Electronics, 2006, 53(5), 1698–1712.
13. Tung, P.-C. and Chen, S.-C. Experimental and analytical studies of the sinusoidal dither signal in a d.c. motor system. Dynamics and Control, 1993, 3(1), 53–69.
14. Hashimoto, M. and Kiyosawa, Y. Experimental study on torque control using harmonic drive builtin torque sensors. J. Robotic Syst., 1998, 15(8), 435–445.
15. Zhang, J., Chan, W. C., Wang, A., and Barton, T. H. Synthesis of optimal sliding mode control for robust DC drive. In Conference Record of the 1988 IEEE Industrial Applications Society Annual Meeting, Pittsburgh, Pennsylvania, 1988, pp. 535–542.
16. Song, G., Cai, L., Wang, Y., and Longman, R. W. A sliding-mode based smooth adaptive robust controller for friction compensation. Int. J. Robust and Nonlinear Control, 1998, 8, 725–739.
17. Ohishi, K., Ohnishi, K., and Miyachi, K. Adaptive DC servo drive control taking force disturbance suppression into account. IEEE Trans. Ind. Applic., 1988, 24(1), 171–176.
18. Umeno, T. and Hori, Y. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Trans. Ind. Electronics, 1991, 38(5), 363–368.
19. Chen, Y. D., Tung, P. C., and Fuh, C. C. Modified Smith predictor scheme for periodic disturbance reduction in linear delay systems. J. Process Control, 2007, 17(10), 799–804.
20. Ro, P. I., Shim, W., and Jeong, S. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engng, 2000, 24(2), 160–173.
21. Han, S. I. Disturbance observer-based sliding mode control for the precise mechanical system with the bristle friction model. Int. J. Korean Soc. Precision Engng, 2003, 4(5), 5–14.
22. Iwasaki, M., Takei, H., and Matsui, N. GMDH based modeling and feedforward compensation for nonlinear friction in table drive systems. IEEE Trans. Ind. Electronics, 2003, 40(6), 1172–1178.
23. Chen, C. L., Jang, M. J., and Lin, K. C. Modeling and high precision control of ball-screw driven stage. Precision Engng, 2004, 28(4), 483–495.
24. Chen, C. L., Lin, K. C., and Hsieh, C. Presliding friction mode: modeling and experimental study with a ball-screw-driven setup. Mathl and Computer Modeling of Dynamical Syst., 2005, 11(4), 397–410.
25. Choi, J. J., Han, S. I., and Kim, J. S. Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller. Mechatronics, 2006, 16(2), 97–104.
26. Cheng, C. C., Chen, C. Y., and Chiu, G. T. C. Predictive control with enhanced robustness for precision positioning in frictional environment. IEEE Trans. Mechatronics, 2002, 7(3), 385–392.
27. Mao, J., Tachikawa, H., and Shimokohbe, A. Double integrator control for precision positioning in the presence of friction. Precision Engng, 2003, 27(4),60419–428.
28. Nuninger, W., Balaud, B., and Kratz, F. Disturbance rejection using output and input estimation application to the friction compensation of a d.c. motor. Control Engng Practice, 1997, 5(4), 447–483.
29. E. Rabinowicz, A Study of the stick-slip process, Friction and Wear, Editor Robert Davies, Elsevier Publishing Co.,New York, 1959.
30. Slotine, J.-J. E. and Li, W. Applied nonlinear control, 1991 (Prentice-Hall, Englewood, New Jersey).
31. Altpeter, F., Grunenberg, M., Myszkorowski, P., and Longchamp, R. Auto-tuning of feedforward friction compensation based on the gradient method. In Proceedings of the American Control Conference, Chicago, Illinois, 2000, pp. 2600–2604.
32. Bartolini, G. and Punta, E. Chattering elimination with second-order sliding modes robust to Coulomb friction. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 2000, 122(4), 679–686.
|