參考文獻 |
[1] B. Francis and B. Wonham, “The internal model principle of control theory”, Automatica, vol. 12, no. 5, pp. 457-465, Sept. 1976.
[2] N. K. Gupta, “Frequency-shaped cost functionals: extension of linear-quadratic- gaussian design methods”, Journal of Guidance and Control, vol. 3, no. 6, pp. 529-535, Nov. 1980.
[3] K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems”, IEEE Control Systems Magazine, vol. 10, no.1, pp. 16-19, Jan. 1990.
[4] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control systems: A new type servo system for periodic exogenous signals”, IEEE Transaction of Automatic Control, vol. 33, no. 7, pp. 659-668, Jul. 1988.
[5] S. Weerasooriya, J. L. Zhang, and T. S. Low, “Efficient implementation of adaptive feedforward runout cancellation in a disk drive”, IEEE Transactions of Magnetics, vol.32, issue 5, pp. 3920-3922, Sept. 1996.
[6] M. F. Byl, S. J. Ludwick, D. L. Trumper, “A loop shaping perspective for tuning controllers with adaptive feedforward cancellation”, Precision Engineering, vol. 29, no. 1, pp. 27-40, Jan. 2005.
[7] H. S. Lee, “Implementation of adaptive feedforward cancellation algorithms for pre-embossed rigid magnetic disks”, IEEE Transactions on Magnetics, vol. 33, no.3, pp. 2419-2423, May 1997.
[8] M. Bodson, A. Sacks, and P. Khosla, “Harmonic generation in adaptive feedforward cancellation schemes”, IEEE Transaction of Automatic Control, vol. 39, no.9, pp. 1939-1944, Sept. 1994.
[9] A. Sacks, M. Bodson, and P. Khosla, “Experimental results of adaptive periodic disturbance cancellation in a high performance magnetic disk drive”, Journal of Dynamics Systems, Measurement, and Control, Transactions of the ASME, vol. 118, pp. 416-424, Sept. 1996.
[10] W. Messner and M. Bodson, “Design of adaptive feedforward algorithms using internal model equivalence”, International Journal of Adaptive Control and Signal Processing, vol. 9, no.2, pp. 199-212, Mar. 1995.
[11] M. Bodson and S. C. Douglas, “Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency”, Automatica, vol. 33, no. 12, pp. 2213-2223, Dec. 1997.
[12] P. Regalia, “An improved lattice-based adaptive IIR notch filter”, IEEE Trans. Signal Processing, vol. 39, no.9, pp. 2124-2128, Sept. 1991.
[13] M. Bodson, J. S. Jensen, and S. C. Douglas, “Active noise control for periodic disturbances”, IEEE Trans. Control Syst. Technol., vol. 9, no.1, pp. 200-205, Jan. 2001.
[14] B. Wu and M. Bodson, “A magnitude/phase-locked loop approach to parameter estimation of periodic signals”, IEEE Transaction of Automatic Control, vol. 48, no. 4, pp. 612-618, Apr. 2003.
[15] C. T. Tsao, Y. X. Qian, and M. Nemani, “Repetitive control for asymptotic tracking of periodic signals with an unknown period”, Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, vol. 122, pp. 364-369, Jun. 2000.
[16] L. J. Brown and Q. Zhang, “Periodic disturbance cancellation with uncertain frequency”, Automatica, vol. 40, no. 4, pp. 631-637, Apr. 2004.
[17] J.-J. E. Slotine, “Sliding controller design for nonlinear systems”, International Journal of Control, vol. 40, no. 2, pp. 421-434, Aug. 1984.
[18] V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty conditions”, Proceedings of the IEEE Conference on Decision and Control, vol. 4, pp. 4591-4596, 1996.
[19] D. S. Yoo and M. J. Chung, “A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties”, IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 860-865, Jun. 1992.
[20] H.-H. Tsai, C.-C. Fuh, and C.-N. Chang, “A robust controller for chaotic systems under external excitation”, Chaos, Solitons and Fractals, vol. 14, no. 4, pp. 627-632, Sept. 2002.
[21] K. Youcef-Toumi and O. Ito, “A time delay controller for systems with unknown dynamics”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 112, no. 1, pp. 133-142, Mar. 1990.
[22] K. Youcef-Toumi and S.-T. Wu, “Input/output linearization using time delay control”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 114, no. 1, pp. 10-19, Mar. 1992.
[23] H. Morioka, K. Wada, and A. Sabanovic, “Sliding mode control based on the time delay estimation”, IEEE International Workshop on Variable Structure Systems, VSS, Proceedings, pp. 102-107, 1996.
[24] C. Wen, Z. Huaguang, and Y. Chaowan, “Input/output linearization for nonlinear systems with uncertainties and disturbances using TDC”, Cybernetics and Systems, vol. 28, no. 7, pp. 625-634, Oct. 1997.
[25] J.-X. Xu and W.-J. Cao, “Synthesized sliding mode and time-delay control for a class of uncertain systems”, Automatica, vol. 36, no. 12, pp. 1909–1914, Dec. 2000.
[26] H. Morioka, A. Sabanovic, A. Uchibori, K. Wada, and M. Oka, “Application of time-delay-control in variable structure motion control systems”, IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1313–1318, 2001.
[27] H. J. Lee and J. J. Lee, “Time delay control of a shape memory alloy actuator’, Smart Materials and Structures, vol. 13, no. 1, pp. 227–239, Feb. 2004.
[28] J.-P. Richard, “Time-delay system: an overview of some recent advances and open problems”, Automatica, vol. 39, no. 10, pp. 1667–1694, Oct. 2003.
[29] K. Watanabe and M. Ito, “A process-model control for linear systems with delay”, IEEE Transaction of Automatic Control, vol. 26, no. 6, pp. 1261–1269, Dec. 1981.
[30] O. J. Smith, “A controller to overcome dead time”, ISA J., vol. 6, pp. 28–33, 1959.
[31] K. J. Astrom, C. C. Hang, and B. C. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time”, IEEE Transaction of Automatic Control, vol.39, no. 2, pp. 343–345, Feb. 1994.
[32] M. R. Matausek and A. D. Micic, “On the modified Smith predictor for controlling a process with an integrator and long dead time”, IEEE Transaction of Automatic Control, vol. 44, no. 8, pp. 1603–1606, Aug. 1999.
[33] I.-L. Chien, S. C. Peng, and J. H. Liu, “Simple control method for integration processes with long deadtime”, Journal of Process Control, vol. 12, no.3, pp. 391–404, Apr. 2002.
[34] M. R. Stojic, M. S. Matijevic, and L. S. Draganovic, “A robust Smith predictor modified by internal models for integrating process with dead time”, IEEE Transaction of Automatic Control, vol. 46, no. 8, pp. 1293–1298, Aug. 2001.
[35] I. Kaya, “IMC based automatic tuning method for PID controllers in a Smith predictor configuration”, Computers & Chemical Engineering, vol. 28, no.3, pp. 281-290, Mar. 2004.
[36] T. Takehara, T. Kunitake, H. Hashimoto, and F. Harashima, “The control for the disturbance in the system with time delay”, International Workshop on Advanced Motion Control, AMC, vol. 1, pp. 349–353, 1996.
[37] Q.-G. Wang, H.-Q. Zhou, Y.-S. Yang, Y. Zhang, and Y. Zhang, “Modified Smith predictor design for periodic disturbance rejection”, 2004 5th Asian Control Conference, vol. 2, pp. 1145–1150, 2004.
[38] S. Sastry and M. Bodson, Adaptive Control, Stability, Convergence, and Robustness., Prentice-Hall: Englewood Cliffs, NJ, 1989.
[39] K. J. Astrom and B. Wittenmark, Adaptive Control., Addison-Wesley Publishing Company: Reading, MA, 1995.
[40] B. Widrow and S. D. Stearns, Adaptive Signal Processing., Prentice-Hall: Englewood Cliffs, NJ, 1985.
[41] N. J. Bershad and J. C. M. Bermudez, “Sinusoidal interference rejection analysis of an LMS adaptive feedforward controller with a noisy periodic reference”, IEEE Trans. Signal Processing, vol. 46, no. 5, pp. 1298-1313, May 1998.
[42] C.-Y. Chang and K.-K. Shyu, “Active noise cancellation with a fuzzy adaptive filtered-X algorithm”, IEE Proceedings: Circuits, Devices and Systems, vol. 150, no. 5, pp. 416-422, Oct. 2003.
[43] H.-S. Ha and Y. Park, “An adaptive feedforward controller for rejection of periodic disturbances”, Journal of Sound and Vibration, vol.201, no. 4, pp.427-435, Apr. 1997.
[44] X. Yegui and T. Yoshiaki, “LMS-based notch filter for the estimation of sinusoidal signals in noise”, Signal Processing, vol. 46, no. 2, pp. 223-231, Oct. 1995.
[45] W. C. Su, S. V. Drakunov, and U. Ozguner, “Constructing discontinuity surfaces for variable structure systems: a Lyapunov approach”, Automatica, vol. 32, no. 6, pp. 925-928, Jun. 1996.
[46] J. J. E. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators”, International Journal of Control, vol. 38, no. 2, pp. 465-492, Aug. 1983.
[47] J. L. Deng, “Control problem of grey system”, System & Control Letters, vol.1, pp. 288–294, 1982.
[48] S.-J. Huang and C.-L. Huang, “Control of an inverted pendulum using grey prediction model”, IEEE Transactions on Industry Applications, vol. 36, no.2, pp. 452–458, Mar. 2000. |