博碩士論文 91343007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.133.114.38
姓名 林廷祐(Ting-Yu Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以液晶熱像法探討微小管內之熱傳特性
(Experimental Analysis on Forced Convective Heat Transfer Characteristics in Micro Tubes by the Method of Liquid Crystal Thermography)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ HFC-134a與HFO-1234yf 在板式熱交換器中流動沸騰之性能比較★ 油冷卻器熱傳與壓降性能實驗分析
★ 水對冷媒R22在板式熱交換器內之性能測試分析★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較
★ 油冷卻器性能測試分析與比較★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試
★ 水對空氣在板式熱交換器之性能測試分析★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析
★ 微熱交換器之設計與性能測試★ 板式熱交換器之入出口壓降實驗分析
★ 液體冷卻系統中之微熱交換器性能分析與改良★ 直接模擬蒙地卡羅法於高低速流場之模擬
★ 液體微熱交換器之熱傳增強研究★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用液晶熱像法來量測微小管溫度以求得水流經微小管的對流熱傳係數,這個方法可以有效的避免用熱偶計等接觸式溫度量測方法所產生的熱分流問題,本研究中微小管的管徑大小分佈從123到962微米,實驗結果顯示完全發展流的摩擦係數及熱傳係數與傳統理論十分吻合。不同管徑下轉換流皆發生在雷諾數從2,300到3,000,與傳統大管徑下轉換流發生的雷諾數一樣。隨著管徑越小層流的熱完全發展長度有較傳統預測式更長的趨勢,在熱發展區管徑962微米所測得的紐賽數與Shah and Bhatti [1987]預測結果十分吻合。在本研究中液晶熱像法的準確度可以高達0.4 oC,這個方法可以更進一步應用到管徑更微小,熱分流更嚴重微小管的溫度量測。
摘要(英) This study proposes a non-contacted Liquid Crystal Thermography (LCT) method for micro tube surface temperature measurement. It avoids the thermal shunt error caused while using the direct contact thermocouples. Forced convective heat transfer performance of water flowing through six micro tubes with inner diameters ranging from 123 to 962 μm were tested. The test results show that the conventional heat transfer and flow resistance correlations for laminar and turbulent flow can well be applied for predicting the fully developed heat transfer performance and friction factor in micro tubes. The transition occurs at Reynolds number from 2,300 to 3,000. This is also the same range as that for conventional larger tubes. The laminar thermal entrance length for micro tubes is longer than that estimated by the conventional correlation. The developing Nusselt numbers for 962 μm tube agrees well with those correlations predicted by the Shah and Bhatti [1987]. The uncertainty applied to measure the micro tube surface temperature is lower than 0.4 oC. It can be further applied for measuring smaller tube surface temperature that the thermal shunt may be more significant by using direct contact temperature measurements methods.
關鍵字(中) ★ 熱分流
★ 液晶熱像法
★ 熱對流熱傳係數
★ 微小管
關鍵字(英) ★ micro tubes
★ convective heat transfer
★ thermal shunt
★ liquid crystal thermography
論文目次 中文摘要...............................................................................................i
ABSTRACT..........................................................................................ii
TABLE OF CONTENTS.....................................................................iv
LIST OF FIGURES.............................................................................vi
LIST OF TABLES...............................................................................ix
NOMENCLATURE..............................................................................x
CHAPTER 1. INTRODUCTION.........................................................1
1.1 Background..................................................................................1
1.2 Purpose of Study..........................................................................3
1.3 Thesis Outline..............................................................................4
CHAPTER 2. LITERATURE REVIEW...............................................6
2.1 Conventional Correlations...........................................................6
2.1.1 Friction Factor.......................................................................6
2.1.2 Heat Transfer.........................................................................7
2.2 Micro Channel Flows..................................................................9
2.2.1 Friction Factor.....................................................................10
2.2.2 Heat Transfer Coefficient....................................................13
2.3 Entrance Region in Micro Channels..........................................18
2.4 Liquid Crystal Thermography....................................................19
2.5 Comments..................................................................................20
CHAPTER 3. EXPERIMENTAL METHODS...................................34
3.1 Experimental Apparatus.............................................................34
3.1.1 Fluid Flow and Pressure Measurement................................34
3.1.2 Temperature Measurement..................................................35
3.1.3 Heating Power and Mass Flow Rate Measurement.............35
3.1.4 Thermostat Box...................................................................36
3.1.5 Heat Loss Estimation...........................................................36
3.2 Test Section................................................................................37
3.3 Liquid Crystal Thermography (TLC)........................................38
3.3.1 Thermochromic Liquid Crystal...........................................39
3.3.2 Image Processing System....................................................40
3.3.3 Calibration System..............................................................41
3.3.4 Hue versus Temperature......................................................41
3.3.5 Lighting System..................................................................43
3.4 Data Reduction..........................................................................44
3.4.1 Friction Factors....................................................................44
3.4.2 Nusselt Number...................................................................46
3.4.3 Uncertainty Analysis...........................................................48
3.4.4 Axial Conduction in the Wall...............................................50
CHAPTER 4. RESULTS AND DISCUSSIONS.................................70
4.1 LCT Viewing Angle Effect........................................................70
4.2 Friction Factors..........................................................................71
4.3 Fully Developed Heat Transfer..................................................73
4.4 Effect of Heat Loss....................................................................75
4.5 Effect of Viscous Heating..........................................................76
4.6 Surface Temperature on Tube Wall............................................77
4.7 Thermal Developing Heat Transfer............................................78
CHAPTER 5. CONCLUSIONS.........................................................101
CHAPTER 6. FUTURE WORKS......................................................103
REFERENCES..................................................................................104
APPENDIX........................................................................................113
A. Internal Wall Temperature Calculation......................................113
B. Uncertainty of Nusselt number..................................................115
C. Fluid Temperature Increases due to Viscous Heating.................120
參考文獻 Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M., and Qureshi, Z., H., 1998, “An experimental investigation of single-phase forced convection in microchannels,” International Journal of Heat and Mass Transfer, Vol. 41, Nos.6-7, pp. 851-857.
Adams, T. M., Dowling, M. F., Abdel-Khalik, S. I., and Jeter, S. M., 1999, “Applicability of traditional turbulent single-phase forced convection to non-circular microchannels,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 4411-4415.
Camci, C., Kim, K., and Hippensteels, S. A., 1992, “A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Image Used in Convective Heat Transfer Studies,” ASME Journal of Turbomachinery, Vol. 114, pp. 765-775.
Campbell, L. A., and Kandlikar, S., 2004, “Effect of entrance condition on frictional losses and transition to turbulent in minichannel flows,” Proceeding of the 2nd International Conference on Microchannels and Minichannels, June 2004, Rochester, New York.
Celata, G. P., Cumo, M., Gugielmi, M., and Zummo, G., 2002, “Experimental investigate of hydraulic and single-phase heat transfer in 0.13- mm capillary tube,” Microscale Thermophysical Engineering, Vol. 6, pp. 85-97.
Celata, G. P., Cumo, M., Marconi, V., McPhailand, S. J., and Zummo, G., 2006, “Microtube liquid single-phase heat transfer in laminar flow,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3538-3546.
Chan, T. L., Frost, S. A., and Jambunathan, K., 2001, “Calibration for viewing angle effect during heat transfer measurements on a curved surface,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 2209-2223.
Cooper, T. E., Field, R. J., and Meyer, J. F., 1975, ”Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer,” ASME Journal of Heat Transfer, Vol. 97, pp. 442-450.
Colburn, A. P., 1933, “A method of correlating forced convection heat transfer data and a comparison with fluid friction,” Trans. AICHE. Vol. 19, pp.174-210.; reprinted in 1964, Int. J. heat mass transfer, Vol. 7, pp. 1359-1384.
Dittus, F. W., and Boelter, L. M. K., 1930, “Heat transfer in automobile radiators of the tubular type,” University of California, Berkeley, Publications on Engineering, Vol. 2, No. 13, pp. 443-461.
Gnielinski, V., 1976, “New equation for heat and mass transfer in turbulent pipe and channel flow,” International Journal of Chemical Engineering, Vol. 16, pp. 359-368.
Grohmann, S., 2005, “Measurement and modeling of single-phase and flow-boiling heat transfer in microtubes,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 4073-4089.
Guo, Z. Y., and Li, Z. X., 2003, “Size effect on microscale single-phase flow and heat transfer,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 149-159.
Hao, P. F., He, F., and Zhu, K. Q., 2005, “Flow characteristics in a trapezoidal silicon microchannel,” J. Micromech. Microeng, Vol. 15, pp. 1362-1368.
Hay, J. L., and Hollingsworth, D. K., 1996, “A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals,” Experimental Thermal and Fluid Science, Vol. 12, pp. 1-12.
Hoffs, A., 1992, “Lquid Crystal Technique For Heat Transfer Measurements Literature Study,” ECOLE POLYTECHNIQUE FEDERALE DELAUSANNE DEPARTEMENT DE MECANIQUE Rapport LTT-92-45, pp. 1-40.
Hohmann, C., Stephan, P., 2002, “Microscale temperature measurement at an evaporating liquid meniscus,” Experimental Thermal and Fluid Science, Vol. 26, pp. 157-162.
Incropera, F. P., and DeWitt, D. P., 2007, Fundamentals of heat and mass transfer, John Wiley & Sons, New York.
Ireland, P. T., Wang, Z., And Jones, T. V., 1995, “Measurement Techniques: Liquid Crystal Heat Transfer Measurements,” von Karman Institute for Fluid Dynamics Lecture Series 1995-01, pp. 1-67.
Judy, J., Maynes, D., and Web, B. W., 2002, “Characterization of frictional pressure drop for liquid flows through microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3477-3489.
Kandlikar, S. G., Joshi, S., and Tian, S., 2003, “Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes,” Heat Transfer Engineering, Vol. 24, No. 3, pp. 4-16.
Lelea, D., Nishio, S., and Takano, K., 2004, “The experimental research on microtube heat transfer and fluid flow of distilled water,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 149-159.
Li, Z. X., Du, D. X., and Guo, Z. Y., 2003, “Experimental study on flow characteristics of liquid in circular microtubes,” Microscale Thermophysical Engineering, Vol. 7, pp. 253-265.
Lin, S., Kwok, C. C. K., Li, R. Y., Chen, Z. H., and Chen, Z. Y., 1991, “Local frictional pressure drop during vaporization of R-12 through capillary tubes,” International Journal of Multiphase Flow, Vol. 17, No. 1, pp. 3925-3936.
Mala, G. M., and Li, D., 1999, “Flow characteristics of water in microtubes,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 142-148.
Maranzana, G., Perry, I., and Maillet, D., 2004, “Mini- and Micro-channels: influence of axial conduction in the walls,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3993-4004.
Muwanga, R., and Hassan, I., 2006, “Local heat transfer measurements in microchannels using liquid crystal thermography: methodology development and validation,” ASME Journal of Heat Transfer, Vol. 128, pp. 617-626.
Owhaib, W., and Palm, B., 2004, “Experimental investigation of single-phase convective heat transfer in circular microchannels,” Experimental Thermal and Fluid Science, Vol. 28, pp. 105-110.
Peng, X. F., and Peterson, G. P., 1995, “The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels,” International Journal of Heat and Mass Transfer, Vol. 38, No.4, pp. 755-758.
Peng, X. F., and Wang, B. X., 1993, “Forced convection and flow boiling heat transfer for liquid flowing through mictochannels,” International Journal of Heat and Mass Transfer, Vol. 39, No. 36, pp. 3421-3427.
Peng, X. F., and Peterson, G. P., 1996, “Convective heat transfer and flow friction for water flow in microchannel structures,” International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2599-2608.
Peng, X. F., and Wang, B. X., 1993, “Forced convection and flow boiling heat transfer for liquid flowing through microchannels,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 3421-3427.
Petukhov, B. S., and Kirillov, V. V., 1958, “The problem of heat exchanger in the turbulent flow of liquid in tubes (in Russia),” Teploeenergetica, Vol. 4, No. 4, pp. 63-68. ; see also Petukhov, B. S., 1970, Advances in heat transfer, Vol. 6, Academic press, New York.
Phares, D. J., Smedley, G. T., and Zhou, J., 2004, “A study of laminar flow of polar liquids through circular microtubes,” Phys. Fluids, Vol. 16, pp. 1267-1272.
Qu, W., Mala, G. M., and Li, D., 2000, “Heat transfer for water flow in trapezoidal silicon microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 3925-3936.
Rahman, M. M., 2000, “Measurement of heat transfer in microchannel heat sink,” International. Communications in Heat and Mass Transfer, Vol. 27, No. 4, pp. 495-506.
Shah, R. K., and Bhatti, M. S., “Laminar Convective Heat Transfer in Ducts,” in Kakac, S., Shan, R. K., and Aung, W., eds., Handbook of Single-Phase Convective Heat Transfer, 1987, Willy, New York.
Shen, S., Xu, J. L., Zhou, J. J., and Chen, Y., 2006, “Flow and heat transfer in microchannels with rough wall surface,” Energy Conversion and Management, Vol. 47, pp. 1311-1325.
Tuckerman, D. B., and Pease, R. F. W., 1981, “High-performance heat sinking for VLSI,” IEEE Electron Device Letter, Vol. EDL-2, No5, pp. 126-129.
Wang, B. X., and Peng, X. F., 1994, “Experimental investigation on liquid forced-convection heat transfer through microchannels,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 73-82.
Webb, R. L., and Zhang M., 1998, “Heat transfer and friction in small diameter channels,” Microscale Thermophysical Engineering Vol. 2, pp. 189-202.
Wu, H. Y., and Cheng, P., 2003a, “Friction factor in smooth trapezoidal silicon microchannels with different aspect ratios,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2519-2525.
Wu, H. Y., and Cheng, P., 2003b, “An experimental study o convective heat transfer in silicon microchannels with different surface conditions,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2547-2556.
Wu, P., and Little, W. A., 1983, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators,” Cryogenics, pp. 273-277.
Wu, P., and Little, W. A., 1984 “Measurement of the heat transfer charcteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators,” Cryogenics, pp. 415-420.
Xu, B., Ooi, K. T., Wong, N. T., and Liu, C. Y., 1999, “Liquid flow in micro-channels,” Proceeding of the 5th ASME/JSME Joint Thermal Engineering Conference, pp. 6214-6220.
Yang, C. Y., Hsu, S. M., Chien, H. T., and Chen, C. S., 2001, “Experimental investigation of liquid R-134A and water forced convection heat transfer in small circular tubes,” Transaction of the Astronautical Society of the Republic of China, Vol. 33, No. 4, pp. 237-245.
Yang, C. Y., Wu, J. C., Chien, H. T., and Lu S. R., 2003, “Friction characteristics of water, R-134a and air in small tubes,” Microscale Thermophysical Engineering, Vol. 7, pp. 335-348.
Yen, T.-H., Kasagi, N., and Suzuki, Y., 2003, “Forced convective boiling heat transfer in microtubes at low mass and heat fluxes,” International Journal of Multiphase Flow, Vol. 29, pp. 1771-1792.
Yu, D., Warrington, R., Barron, R., and Ameel, T., 1995, “An experimental and theoretical investigation of fluid flow and heat transfer in microtubes,” Proceeding of 4th ASME/JSME Thermal Engineering Conference, Vol. 1, pp. 523-530.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2007-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明