參考文獻 |
[1] Pahlm O. and Sornmo L., Software QRS detection ambulatory, monitoring - A review. Med. Biol. Eng. Comput.,Vol 22,pp.289-297,1984.
[2] Okada M., A digital filter for the QRS complex detection, IEEE trans. Biomed. Engr., Vol BME-26, pp.700-704,1979.
[3] Van Dam RAAF, Brekelmans FEM, Duisterhout JS, A high performance Microprocessor-based arrhythmia monitor., IEEE Computers in Card. SOC., pp.449-452,1981
[4] J.S. Sahambi, S.N. Tandon,and R.K.P Bhatt,”Using wavelet transforms for ECG characterization,” IEEE Engineering in Medicine and Biology,pp.77-83,1997.
[5] K.p. Lin and W.H. Chang.,”QRS feature extraction using linear prediction”,IEEE Trans. Biomed.Eng., vol.36,no.10,pp.1050-1055,Oct.1989..
[6] J. Pan and W. Tompkins, “A real-time QRS detection algorithm”, IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230-236, March. 1985.
[7] B.Huang and W.Kinsner ,”ECG frame classification using dynamic time warping”, Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering ,Winnipeg, Canada, pp.1105-1110, Feb,2002
[8] B. P. Bogert, M. J. Healy and J. W. Tukey, “The frequency analysis of time series for echoes: cepstrum pseudo- autocovariance, cross-cepstrum and shape cracking,” in: M. Rosenblatt (Ed.), Time Series Analysis, New York: Wiley, pp.209-243, 1963.
[9] B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification,” J. Acoust. Soc. Am., 55: 1304-1312, 1974.
[10] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.
[11] S. I. Niwas, R. S. S. Kumari and V. Sadasivam, “Artificial neural network based automatic cardiac abnormalities classification,” Proc. of Sixth Int. Conf. on Computational Intelligence and Multimedia Applications, 41-46, 2005.
[12] L. Fausett, Fundamentals of Neural Networks, Englewood Cliffs, NJ: Prentice Hall, 1994.
[13]D. Davis, 1992, How to Quickly and Accurately Master ECG Interpretation, Lippincott Williams & Wilkins Publishers.
[14]Y. X. Huang, 2000, Clinical Electrocardiography (in Chinese), second edition, Yi-Xuan Publishers.
[15] R. J. Rangayyan, 2002, Biomedical Signal Analysis, Wiley-Interscience.
[16]W. J. Tompkins, 1993, Biomedical Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall.
[17] J. G.. Webster, 1998, Medical Instrumentation Application and Design, third edition, John Wiley & Sons, LTD.
[18]Mammone, R. J., Zhang, X., and Ramachandran, R. P., Robust speaker recognition-A feature-based approach. IEEE Signal Processing Magazine (Sept. 1996),58-71.
[19]Junqua, J. C., and Haton, J. P., Robustness in Automatic Speech Recognition--Fundamentals and Applications. Boston: Kluwer Academic Publishers, 1996.
[20]Markel, J. D., and Makhoul, A. h., Linear Prediction of speech. New York: Springer-Verlag, 1976.
[21]Sugamura, N., and Itakura, F. Speech analysis and synthsis methods developed at ECL in NTT—from LPC to LSP. Speech Communication, 5(1986),199-215.
[22] Atul Luthra, “ECG Made Easy”, 2nd edition, Jaypee Publications, New Delhi, 2004.
[23] K. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination of beats of ventricular tachyarryhtmia with Fourier transform neural network,” IEEE Trans. Biomed. Eng., vol. 46, pp.179-185, Feb. 1999.
[24] S. Evans, H. Hastings, and M. Bodenheimer, “Differentiation of beats of ventricular and sinus origin using a self-training neural network,” PACE, vol.17, pp.320-328, 1989..
[25] R. Clayton, A. Murray, and R. Campell, “Recognition of ventricular fibrillation using neural network,” Med. Biol. Eng. Comput., vol.32,pp. 611-626,1994.
[26] L. Sornmo, P. O. Borjesson, M. E. Nygards, and O. Pahlm, “A method for evaluation of QRS shape features using a mathematical model for the ECG,” IEEE Trans. Biomed. Eng., vol. 28, pp.713-717,Aug 1981.
[27] T. H. Yeap, F. Johnson, and M.Rachniowski, “ECG beat classification by a neural network”, in Proc Annu. Int. Conf. IEEE Engineering Medicine and Biology Soc., 1990, pp. 1457-1458.
[28] Yu Hen Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications of artificial neural network for ECG signal detection and classification”, J. Electrocardiol.,vol. 26, pp. 66-73, 1993.
[29] S. Osowski and T. H. Linh, “ECG beat recognition using fuzzy hybrid neural”, IEEE Trans. Biomed. Eng., vol. 44, pp.1265-1271, Nov. 2001.
[30] Y. H. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG beat classifier using a mixture of experts approach”, IEEE Trans. Biomed. Eng., vol. 44, pp.891-900, Sept. 1997.
[31] L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passasriello, “Comparing wavelet transforms for recognizing cardiac pattern,” IEEE Eng. Med. Biol. Mag., vol. 14, pp.167-183, Mar-Apr.,1995.
[32] D. A. Coast, R. M. Stern, G. G. Cano, and S. A. Briller, “An approach to cardiac arrhythmia analysis using hidden markov models,” IEEE Trans. Biomed. Eng., vol. 37, pp.826-836, Sep. 1990.
[33] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo, “Clustering ECG complexes using hermite functions and self organizing maps”, IEEE Trans. Biomed. Eng., vol. 47, pp.838-848, July. 2000.
[34] P. Chazal and R. B. Reilly, “A comparison of the use of different wavelet coefficients for the classification of the electrocardiogram,” in 15th Internation Conference on Pattern Recognition, vol. 2, pp.255-258, 2000.
[35] S. Furui., 1981, “Ceptral analysis technique for automatic speaker verification,” in IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 2, pp.254-272.
[36] K. P. Lin, W. H. Chang., 1987, “ECG signal analysis by linear predictive method. Presented at IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society, Boston, MA, 13-16 November, pp. 557-558.
[37] S.B. David and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,”IEEE Trans. Acoust. Speech,Signal Processing,ASSP-28,pp.357-366,1980.
[38]S. Furui, Digital Speech Processing, Synthesis, and Recognition, New York: Marcel Dekker, 1989.
[39]Z. Dokur, T. Olmez and E. Yazgan, “Comparison of discrete wavelet and Fourier transform for ECG beat classification,” Electron. Lett., 35: 1502-1504, 1999.
[40]Zhang, Y. and Nishi, A., “Low-pressure air motor for wall-climbing robot actuation”, Mechatronics, vol. 13, no. 4, pp. 377-392, May 2003.
[41]Zarei, J. and Poshtan, J., “Bearing fault detection using wavelet packet transform of induction motor stator current”, Tribology International, Vol. 40, Issue 5, pp. 763-769, 2007.
[42]W.H Chang and K.P Lin “A Real-Time PVC Detection Algorithm for Microprocessor-Based Bedside Monitoring System ,”Proc. 7th Annual Conf. Of IEEE Eng. In Med. and Biol. Society, pp.841-844, Chicage,I11.,U.S.A.(1985) |