博碩士論文 92323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.118.19.189
姓名 徐育愷(Yu-Kai Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微波活化對被植入於矽中之氫離子之研究
(The study of microwave activation on hydrogen ions implanted with silicon)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 矽/石英晶圓鍵合之研究
★ 奈米尺度薄膜轉移技術★ 光能切離矽薄膜之研究
★ 氮矽基鍵合之研究★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著絕緣層矽晶材料(SOI,Silicon-on-Insulator)及異質晶圓薄膜轉移技術的發展,帶領半導體工業進入了另一個世代。智切法(Smart-Cut Process) 是一種結合離子佈植與晶圓鍵合技術之構想的薄膜轉移製程,但其存在著高溫熱處理所帶來之熱應力、耗能源及低生產效率等缺點。一種興新的能源—微波能,期能取代傳統高溫退火製程,改善其缺失。
本研究即在探討微波活化效應對被植入於矽中之氫離子的激發作用。實驗以不同的微波時間和功率照射各種氫離子佈植劑量之矽晶圓試片,並觀察分析其之間的關係。由實驗結果發現氫離子佈植劑量為4×1016ion/㎝2之試片,在微波頻率2.45GHz及微波功率5W下照射60秒即能在表面形成微小氣泡,顯示微波確實能激發氫氣離子;而佈植劑量為5×1015ion/㎝2之試片,在高功率微波照射下亦無反應,顯示氫離子劑量須達臨界劑量,在微波照射激發下才能聚集形成氣泡。再者,微波功率愈大、微波時間愈長,氫氣離子愈容易被激發而獲得結合成氣體分子之動能,最後聚集造成氣泡破裂,甚至達到薄膜剝離的結果。
摘要(英) The development in Silicon-on-Insulator(SOI)materials and dissimilar materials layer transfer process have led the thin film semiconductor technology into a new era. Smart-cut process is a layer transfer process which combines three main steps: ion implantation, wafer bonding, and layer splitting. However, it still has some drawbacks such as high thermal stress, high energy consumption and low production efficiency, resulting from the thermal treatment. Therefore it is highly expected that an emerging source of energy, the microwave energy, will replace the traditional annealing process and thus solve those problems.
The purpose of this paper is to study the priming excitation effect that microwave activation effect has on the hydrogen ions which were implanted into the silicon wafer. In the experiment, various silicon wafers implanted with different dosage of hydrogen ions were irradiated by microwave at different length of time and microwave power, with a view to examining the relationship between each other. The results indicated that, irradiating at 5W microwave power for 60 seconds, blisters will occur on the surface of the wafers which were implanted with 4×1016ion/㎝2 of hydrogen ions. This showed that the microwave can indeed excite hydrogen ions. On the other hand, the wafers implanted with 5×1015ion/㎝2 of ions had no reactions even when irradiated at higher microwave power. It showed that the implanted hydrogen ions have to reach a critical dosage so as to form blisters under the microwave irradiation. In addition, the higher microwave power and the longer irradiation time, the more hydrogen ions can be excited and gain the energy to form gas molecule. Finally the hydrogen ions aggregated and caused the bubbles to burst or the thin film to ablate.
關鍵字(中) ★ 微波活化
★ 離子佈植
關鍵字(英) ★ ion implanted
★ microwave activation
論文目次 摘要 ....................................................Ⅰ
誌謝 ....................................................Ⅳ
總目錄 ..................................................Ⅴ
圖目錄 ..................................................Ⅶ
表目錄 ..................................................Ⅷ
第一章 前言
1.1 研究背景 .........................................1
1.2 研究動機 .........................................2
第二章 離子佈植應用於薄膜轉移製程
2.1 離子佈植導致薄膜轉移技術 .........................4
2.1.1 智切法製程介紹 ...............................4
2.1.2 薄膜轉移過程概述 .............................5
2.2 氫在半導體晶圓中之現象 ...........................6
2.3 氣泡形成與剝離機制 ...............................7
2.3.1 氣泡的出現與微裂縫的成長 .....................8
2.3.2 氣泡破裂與剝離現象 ...........................9
2.4 面臨的問題與突破 ................................10
第三章 微波化學
3.1 微波簡介 ........................................19
3.2 微波與材料間的相互反應 ..........................19
3.2.1 電偶極矩極化 ................................21
3.2.2 離子傳導 ....................................22
3.3 微波熱力的特性 ..................................22
3.3.1 材料的介電性質 ..............................23
3.3.2 轉變溫度輪廓 ................................24
3.4 微波對矽中氫離子的激發作用 ......................25
第四章 實驗方法與步驟
4.1 實驗流程 ........................................29
4.1.1 離子佈植 ....................................29
4.1.2 微波活化 ....................................29
4.1.3 影像觀測 ....................................30
第五章 實驗結果與討論
5.1 微波功率及氫離子佈植劑量之相互關係 ..............36
5.1.1 氫離子佈植劑量對微波活化之影響 ..............36
5.1.2 微波功率對氫氣離子活化之影響 ................37
5.2 微波時間對氫氣離子活化之影響 ....................38
第六章 結論 ............................................45
參考文獻 ................................................46
論文發表 ................................................50
參考文獻 [1] G.K. Celler, “Applied physics reviews-focused review: Frontiers of silicon-on-insulator”, J. of Appl. Phys., Vol. 93, No. 9, pp. 4955-4975 (2003).
[2] 莊達人,“VLSI 製造技術”,高立圖書有限公司, pp. 74-578 (2004).
[3] Hong Xiao, “Introduction to Semiconductor Coating Characterization, M.S. Thsis, Univ. Manufacturing Technology”, Prentice-Hall Inc., pp .53-299 (1992) of Virginaia (1997).
[4] Q.-Y. Tong et al., Semiconductor Wafer Bonding: Science and Technology, John Wiley&Sons, Inc., pp. 17-169 (1999).
[5] G.L. Sun, “Cool plasma activated surface in silicon direct bonding technology”, J.de Physique, 49(C4), pp. 79 (1988).
[6] M. Bruel, “Silicon on insulator material technology”, Electron. Lett., Vol.31, pp.1201, (1995).
[7] Tien-Hsi Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, pp.100-121 (1998).
[8] 金欽漢,“微波化學”,科學出版社, pp.1- 45 (2001).
[9] Osepchuk JM, IEEE Trans. Microwave theory and Technique Vol. MTT-32(9). pp.26 (1984).
[10] J. Lin et al., “Nova CutTM Process: Fabrication of Silicon on insulator Materials”, 2002 IEEE International SOI Conference, pp. 189-191 (2002).
[11] T. H. Lee, Q. Y. Tong, Y. L. Chao, L. J. Huang and U. Gosele, ”Silicon on quartz by a Smarter Cut process” Electrochem. Soc. Proceeding of the 8th International Symposium of Silicon-on-Insulator Technology and Devices, Pennington, NJ, USA, pp. 27-32 (1997).
[12] Q. Y. Tong, T. H. Lee, P. Werner, U. Gosele, R. B. Bergmann, and J. H. Werner, J. Electrochem. Soc., 144, L111-13 (1997).
[13] E. Jalaguier, B. Aspar, S. Pocas, J. F. Michaud, M. Zussy, A. M. Papon, and M. Bruel, “Transfer of 3 in GaAs film on silicon substrate by protonimplantation process”, Electron. Lett., 34, pp. 408-409 (1998).
[14] U. M. Gösele and Q. Y. Tong, IEEE 12th International Conference of InP and related materials, 9-12, Williamsburq, VA, USA (2000).
[15] von Herrn Ionut Radu, “Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding”, Ph.D dissertation, Germany, pp. 77-88 (2003).
[16] M. Bruel, B. Aspar, H. Moriceau, E. Jalaguier, and Lagahe, Electrochem. Soc. Proceeding of the Third International Symposium on Defect in Silicon, Pennington, NJ, USA, Vol. 99-1, pp. 203-214 (1999).
[17] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during the annealing process” Microelectronic Engineering, 66, pp. 314-319 (2003).
[18] J. Grisolia, G. Ben, Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study ofthe growth kinetics of H platelets in Si” Appl. Phys. Lett., 76, pp. 852-854 (2000).
[19] Materials Science in two cooperating academic institutes in Budapest, Inc, http://surphy.fat.bme.hu/pub/Semiconductors/pres_Ia_small.ppt
[20] J. I. Pankove and N. M. Johnson., “Hydrogen in Semiconductors”, Semiconductors and Semimetetals 34, NY, Academic (1991).
[21] B. Sun et al., “Vibrational Lifetimes of Hydrogen in Silicon”, Hydrogen in Materials and Vacuum System, pp. 67-73 (2003).
[22] Stefan K. Estreicher, “Dynamics of Hydrogen in Silicon”, Hydrogen in Materials and Vacuum System, pp. 40-47 (2003).
[23] A. Y. Usenko and W. N. Carr, “Blistering on Silicon Surface Caused by Gettering of Hydrogen on Post-Implantation Defects”, Mat. Res.Soc. Symp. Proc., Vol. 681E, pp.I331-336 (2001).
[24] C. H. Seager and R. A. Anderson, “Charge state control of hydrogenation in silicon”, J. Appl. Phys., 80, 151-155 (1996).
[25] S. Romani and J.H. Evans, “ Platelet Defects in Hydrogen Implanted Silicon”, Nucl. Instr and Meth. Phys. Res. B, 44, pp. 313-317 (1990).
[26] G. F. Cerofolini et al., “Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon”, Phys. Rev. B 46, 2061–2070 (1992).
[27] Chris G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T. Pantelides, “Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. B 39, 10791–10808 (1989).
[28] K. J. Chang and D. J. Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Phys. Rev. B 40, 11644–11653 (1989).
[29] K. Mitani and U. Gosele, “Formation of interface for preventing thermal bubbles in silicon wafer bonding”, Appl. Phys. A, 54, pp. 543-552 (1992).
[30] MK Weldon et al., “On the mechanism of the hydrogen-induced. exfoliation of silicon,” J. Vac. Sci. Technol., vol. B 15, pp. 1065–1073 (1997).
[31] L.J. Huang, Ph.D. Dissertation, Duke University (1999)
[32] Tien-His Lee, Manufacturing Method of Thin Film on a substrate, 00452866 (2001)
[33] JT Borenstein, JW Corbett, and SJ Pearton, “Kinetic model for hydrogen reactions in boron-doped silicon”, J. Appl. Phys., 73, 2751–2754 (1993).
[34] G. Gawlik, R. Ratajczak, A. Toros, J. Jagielski, S. Bedell and W. A. Lanford, “Hydrogen Ion Implantation into GaAs”, Vacuum, 63, 697-700 (2001).
[35] D. Micael, P. Mingos and David R. Baghurst, “Application of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry”, Chem. Soc. Rev., 20, pp. 1-47 (1991).
[36] David E. Clark and Willard H. Sutton, “Microwave Processing of Materials”, Annu. Rev. Mater. Sci., 26, pp. 299-331 (1996).
[37] G. Whittaker, “Microwave Heating Mechanisms”, http://homeoages.ed.ac.uk /ah05/chla.html (1994).
[38] A. C. Metaxas, “Microwave heating”, IEE Power Engineering Journal 5 (1991).
[39] D. R. Baghursl, J. Chem. Soc. Chem. Commum., 9, pp. 674 (1992).
[40] A. C. Metaxas and R. J. Meredith, “Industrial Microwave Heating”, London: Peregrinus., pp. 357 (1988).
[41] A. De, I. Ahmad, E. D. Whitney, D. E. Clark, Ceram. Eng. Sci. Proc., 11(9-10), pp. 1743-53 (1990).
[42] D. E. Clark, I. Ahmad, R. C. Dalton, Mater. Eng. Sci., A144, pp. 91-97 (1991).
[43] 鄭仁迪 碩士論文 熱力微波照射製作絕緣層矽晶材料 (2005)
[44] Microwave bonding instruments, Inc, http://www.microwavebonding.com
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明