博碩士論文 92323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.141.25.214
姓名 陳誌遠(Chih-Yuan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 軟骨細胞在組織工程支架之培養研究
(chondrocytes cultured in the tissue engineered scaffold)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 細胞在組織工程支架之生長與遷移★ 冷電漿沉積類鑽碳膜之製程模擬分析
★ 格狀自動機探討組織工程細胞體外培養研究★ 細胞在注流式生物反應器之生長研究
★ 週期式圓錐平板裝置之流場分析★ 設計與製作圓錐平板型生物反應器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
組織工程是一個試著結合工程技術及生命科學,來解決人們器官受損或衰竭之後所產生病痛甚至死亡的一個方法。從體外的皮膚、眼角膜到體內的腎臟、肝臟甚至是神經、血管…等,都是目前學者研究的方向。在人體中大部分組織的成分及結構都相當複雜,而軟骨組織由於沒有血管、神經及淋巴系統,且僅由一種細胞所組成,是較為簡單的一種組織,所以是許多學者首先研究的方向。之前的學者模擬軟骨細胞培養於多孔性介質的支架時,並未考慮細胞的運動行為會影響其生長情形。而本文的研究的方向,是考慮細胞受化學趨向性影響,以及隨機運動的方式,來描述細胞生長情形,再利用之前學者的實驗結果,來建立較完整的方程式,以及模擬注流式生物反應器培養細胞的結果。本文亦以實驗方式探討老鼠軟骨細胞(IRC)培養於支架(PLGA50/50)時,以浸置的培養方式了解細胞隨時間的成長情形。由理論預估的結果可得知,軟骨細胞培養在支架時,其運動方式會受化學趨向性及隨機運動影響,而影響生長情形;且使用注流式生物反應器培養組織時,即使在較厚的支架中培養,其細胞密度也可以提昇至與正常的軟骨組織相似。
摘要(英) Abstract
Tissue engineering is a method which combines engineering technology and life science to repair human’s organ failure or injure. The researches in progress cover a variety of tissue types such as skin, cornea, kidney, liver, nerves, blood vessels etc. Most tissues are very complex in both structure and components. Cartilage, which has no blood, nerves and lymph, is relatively a simple tissue only composed of one kind of cells, so it’s been drawn a lot of research interest. In this paper, we consider cell growth in a porous scaffold affected by chemotaxis and random walk, use previous experiment data in the literature to develop a more complete model, and simulate cells cultured by a perfusion bioreactor. An experiment is also performed to understand the static culture of Immortalized Rat Chondrocyte (IRC) in a polymer scaffold (PLGA50/50). Form theoretical work we know when chondrocytes cultured in the scaffold, their migration will effect growth condition. Using the perfusion bioreactor to culture chondrocytes, cell density can be promoted towards normal cartilage tissues even in thick scaffolds.
關鍵字(中) ★ 組織工程
★ 軟骨組織
★ 支架
★ 注流式生物反應器
關鍵字(英) ★ cartilage
★ tissue engineering
★ perfusion bioreactor
★ scaffold
論文目次 目錄
中文摘要
英文摘要
誌謝
目錄……………………………………………………………………..Ⅰ
表目錄.. ………………………………………………………………...Ⅳ
圖目錄…………………………………………………………………..Ⅴ
符號說明………………………………………………………………..Ⅶ
第一章 緒論............................................................................................1
1.1 文獻回顧....................................................................................2
1.2 研究動機....................................................................................4
第二章 靜態培養理論模式....................................................................5
2.1 方程式的建構............................................................................5
2.2 統御方程式及邊界條件............................................................7
2.3 無因次化....................................................................................9
2.4 解題方法..................................................................................10
2.5 理論驗証..................................................................................11
2.6 無因次參數分析......................................................................12
2.6.1 的影響........................................................................12
2.6.2 Γ的影響..........................................................................12
2.6.3 Rg與Rd的影響...............................................................13
第三章 靜態培養實驗..........................................................................14
3.1 材料..........................................................................................14
3.1.1 支架................................................................................14
3.1.2 細胞................................................................................14
3.2 實驗方法..................................................................................15
3.2.1 支架消毒........................................................................15
3.2.2 種植................................................................................15
3.2.3 培養................................................................................15
3.2.4 蛋白質定量....................................................................16
3.3 實驗結果..................................................................................17
3.3.1 細胞數量測定................................................................17
3.3.2 靜態培養結果................................................................17
3.4 改進方法及結果......................................................................17
3.4.1 支架消毒........................................................................18
3.4.2 種植................................................................................18
3.4.3 種植結果........................................................................19
第四章 注流式生物反應器設計與分析..............................................20
4.1 注流式生物反應器設計與製做..............................................20
4.1.1 生物反應器的流力環境................................................20
4.1.2 生物反應器須具有的特性及使用材料........................21
4.2 理論建模..................................................................................22
4.3 理論估算結果..........................................................................24
4.3.1 靜態與注流培養的比較................................................24
4.3.2 不同支架厚度時,注流強度值對細胞數目的影響......25
第五章 結論與未來展望......................................................................26
參考文獻………………………………………………………………..28
附錄……………………………………………………………………..33
參考文獻 Alleborn, N., Nandakumar, K., Raszillier, H., Raszillier, H., Durst, F., 1997. Further contributions on the two-dimensional flow in a sudden expansion. J. Fluid Mech. 330, 169-188.
Bancroft, G.N., Sikavitsas, V.I., Mikos, A.G., 2003. Technical Note: Design of a Flow Perfusion Bioreactor System for Bone Tissue- Engineering Applications. Tissue Engineering 9(3), 549-554.
Bradford, M.M., 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72, 248-254.
Brown, T.D., 2000. Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics 33, 3-14.
Buckwalter, J.A., Mankin, H.J. ,1997. Articular Cartilage. Part I:Tissue Design and Chondrocyte-Matrix interactions. J Bone Joint Surg 79A, 600-611.
Bush, P.G., Hall, A.C., 2001. Regulatory Volume Decrease (RVD) by Isolated and In Situ Bovine Articular Chondrocytes. Journal of Cellular Physiology 187, 304-314.
Carrier, R., Papadake, M., Rupnick, M., Schoen, F.J., Vunjak-Novakovic, G., 1999. Cardiac Tissue engineering: Cell Seeding, Cultivation Parameters and Tissue Construct Characterization. Biotechnol. Bioeng. 64, 580-589.
Chapa, S.C., 2005. Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, New York.
Frangos, J.A., Mclntire, L.V., Eskin, S.G., 1988. Shear Stress Induced Stimulation of Mammalian Cell Metabolism. Biotechnology and bioengineering 32, 1053-1060.
Freed, L.E., Vunjak-Novakovic, G., 2000. Tissue Engineering Bioreactors, in: Lanza, R.P., Langer, R., Vacanti, J. (EDS.), Principles of Tissue Engineering. Academi Press, San Diego, pp.143-156.
Freed, L.E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D., Lesnoy, D., Barlow, S.K., Langer, R., 1994a. Biodegradable Scaffold for Tissue Engineering. Bio/Technology 12, 689-693.
Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., Langer, R., 1994b. Kinetics of Chondrocyte Growth in Cell-Polymer Implants. Biotechnology and Bioengineering 43, 597-604.
Galban, C.J., Locke, B.R., 1997. Analysis of Cell Growth in a Polymer Scaffold Using a Moving Boundary Approach. Biotechnology and Bioengineering 56(4), 422-432.
Galban, C.J., Locke, B.R., 1999a. Analysis of Cell Growth Kinetics and Substrate Diffusion in a Polymer Scaffold. Biotechnology and Bioengineering 65(2), 121-132.
Galban, C.J., Locke, B.R., 1999b. Effects of Spatial Variation of Cells and Nutrient and Product Concentrations Coupled with Product Inhibition on Cell Growth in a Polymer Scaffold. Biotechnology and Bioengineering 64(6), 633-643.
Glucksmann, A., 1939. Studies on Bone Mechanics in vitro: II, The Role of Tension and Pressure in Chondrogenesis. Anatomical Record 73, 39-56.
Griffith, L.G., Naughton, G., 2002. Tissue Engineering—Current Challenges and Expanding Opportunities. Science 295, 1009-1014.
Goldstein, A.S., Juarez, T.M., Helmke, C.D., Gustin, M.C., Mikos, A.G., 2001. Effect of Convection on Osteoblastic Cell Growth and Function in Biodegradable Polymer foam Scaffolds. Biomaterials 22, 1279-1288.
Hillesdon, A.J., Pedley, T.J., Kessler, J.O., 1995. The Development of Concentration Gradients in a Suspension of Chemotactic Bacteria. Bulletin of Mathematical Biology 57(2), 299-344.
Sato, T., Chen, G., Ushida, T., Ishii, T., Ochiai, N., Tateishi, T., 2001. Tissue-engineered Cartilage by in vivo Culturing of chondrocytes in PLGA-Collagen Hybrid Sponge. Materials Science and Engineering C 17, 83-89.
Schilling, R.J. and Harris, S.L., 2000. Applied Numerical Methods for Engineers. Brooks/Cole Publishing company.
Langer, R., Vacanti, J.P., 1993. Tissue Engineering. Science 260, 920-926.
Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., Freed, L.E., 2001. Enhanced Cartilage Tissue Engineering by Sequential Exposure of Chondrocytes to FGF-2 During 2D Expansion and BMP-2 During 3D Cultivation. Journal of Cellular Biochemistry 83, 121-128.
Munson, B.R., Young, D.F., Okiishi, T.H. Fundamentals of Fluid Mechanics. Wiley 3 edition.
Obradovic, B., Carrier, R.L., Vunjak-Novakovic, G.., Freed, L.E., 1999. Gas Exchange is Essential for Bioreactor Cultivation of Tissue Engineered Cartilage. Biotechnology and Bioengineering 63(2), 197-205.
Obradovic, B., Martin, I., Padera, R.F., Treppo, S., Freed, L.E., Vunjak-Novakovic, G., 2001. Integration of Engineered Cartilage. Journal of Orthopaedic Research 19, 1089-1097.
Obradovic, B., Meldon, J.H., Freed, L.E., Vunjak-Novakovic, G., 2000. Glycosaminoglycan Deposition in Engineered Cartilage: Experiments and Mathematical Model. AIChE Journal 46(9), 1860-1871.
Pazzano, D., Mercier, K.A., Moran, J.M., Fong, S.S., DiBiasio, D.D., Rulfs, J.X., Kohles, S.S., Bonassar, L.J., 2000. Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnol. Prog. 16, 893-896.
Rodan, G.A., Bourret, L.A., Harvey, A., Mensi, T., 1975. 3’, 5’-cyclic AMP and 3’, 5’-cyclic GMP mediators of the mechanical effects on bone remodeling. Science 198, 467-469.
Shin, H., Zygourakis, K., Farach-Carson, M.C., Yaszemski, M.J., Mikos, A.G., 2004. Attachment, Proliferation, and Migration of Marrow Stromal Osteoblasts Cultured on Biomimetic Hydrogels Modified with an Osteopontin-Derived Peptide. Biomaterial 25, 895-906.
Shreiber, D.I., Barocas, V.H., Tranquillo, R.T., 2003. “Temporal Variations in Cell Migration and Traction during Fibroblast-Mediated Gel Compaction.” Biophysical Journal 84, 4102–4114.
Sucosky, P., Osorio, D.F., Brown, J.B., Neitzel, G.P., 2003. Fluid Mechanics of a Spinner-Flask Bioreactor. Biotechnology and Bioengineering 85(1), 34-46.
Wendt, D., Marsano, A., Jakob, M., Heberer, M., Martin, I., 2003. “Oscillating Perfusion of Cell Suspensions Through Three- Dimensional Scaffolds Enhances Cell Seeding Efficiency and Uniformity”. Biotechnology and Bioengineering 84(2), 205-214.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明