博碩士論文 92323063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:18.190.156.214
姓名 林弘基(Hong-Ji Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
(The parametric study in the cathode of PEMFC with the interdigitated flow field)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 銅質均熱片研製
★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象★ 氣體擴散層與微孔層對於燃料電池之影響與分析
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以二維數值模擬分析質子交換膜燃料電池的陰極半電池搭配叉合型單相流場,計算區域包括擴散層、催化層和薄膜。數值解著重在探討淨水傳輸效應、質子電場效應和不同參數(入口壓力、薄膜含水量、擴散層和催化層的孔隙率以及Nafion材質中不同亞硫酸根離子濃度)對電流-電壓曲線的影響。
數值結果發現淨水傳輸效應對電池性能幾乎沒有影響,但是質子電場效應會強烈壓抑入口流入的氧氣,因而降低電池的電流密度。增加薄膜含水量會提高過電位,使電流密度上升。而入口壓力愈高,入口氧氣濃度亦隨之增加,對於歐姆極化的影響降低,且降低在催化層中逆流的效應。增加擴散層和催化層的孔隙率對於氧氣的擴散能力加強,在濃度極化時可有效提供氧氣參與反應。在催化層內由於質子由高電位往低電位移動會影響氣體流動方向,故本文探討在催化層不同亞硫酸根離子濃度(可視為Nafion材質的成分指標)對於質子電位的影響,有別於一般燃料電池的研究認為Nafion材質中亞硫酸根離子濃度愈高,質子傳導愈多,燃料電池性能愈好。但本文的數值解卻顯示降低亞硫酸根離子濃度,對造成在催化層內逆流的影響愈小,可有助提高電流密度。
摘要(英) A numerical study is performed to analyze the half-cell model for the proton exchange membrane fuel cell (PEMFC) with an interdigitated gas flow field. The modeling domain consists of the diffuser layer, catalyst layer and the membrane. Numerical simulation is focused on effects of the net water transport, protonic field and various parameters on the performance of current density-voltage (I-V) curve.
Simulations reveal that the net water transport virtually has no any effect on the I-V curve. However, the inflow oxygen amount is strongly blocked by the action of protonic field and hence the current density is reduced. The increasing of water content in the membrane enhances the overpotential, thus increases the current density. The higher inlet pressure results in more oxygen concentration, and reduce the reversed flow in the catalyst layer. The overall effects minimize the ohmic polarization effect. Increasing the porosity of the diffusion layer and the catalyst layer will enhance the oxygen diffusion which effectively provide oxygen for reaction when the concentration polarization occurred. In the catalyst layer, the direction of the gas flow is affected by the proton migration from the high electric potential to the low electric potential. Results of the protonic field effect due to alteration of the SO3 concentration (a composition index to characterize different type of Nafion) in the catalyst layer are different from others investigation and its explanation is discussed.
關鍵字(中) ★ 質子交換膜燃料電池
★ 叉合型流場
★ 淨水傳輸效應
★ 質子電場效應
關鍵字(英) ★ net water transport effect
★ PEMFC
★ protonic field effect
★ interdigitated flow field
論文目次 中文摘要I
AbstractII
致謝III
目錄IV
圖目錄VI
表目錄X
符號說明XI
第一章 緒論1
1.1 前言1
1.2 燃料電池的簡介2
1.3文獻回顧5
1.4 研究目的13
第二章 理論分析和數值方法15
2.1 物理模型和基本假設15
2.2 統御方程式15
2.3 邊界條件20
2.4 數值分析22
第三章 結果與討論24
3.1 格點測試及驗證 24
3.2 在催化層中考慮淨水傳輸效應和質子電場效應26
3.3 薄膜含水量對陰極半電池性能的影響28
3.4 入口壓力對陰極半電池性能的影響28
3.5 擴散層和催化層的孔隙率對陰極半電池性能的影響29
3.6 Nafion材質中不同亞硫酸根離子濃度對陰極半電池性能的影響30
第四章 結論與建議32
4.1 結論32
4.2 建議33
第五章 參考文獻34
參考文獻 Bernardi D. M., “Water-balance calculations for solid-polymer-electrolyte fuel cells”, J. Electrochem. Soc., 137 (1990), pp. 3344-3350.
Bernardi D. M., Verbrugge M. W., “Mathematical model of a gas diffusion electrode boned to a polymer electrolyte”, AIChE J., 37 (1991), pp. 1151-1163.
Bernardi D. M., Verbrugge M. W., “A mathematical model of the solid-polymer-electrolyte fuel cell”, J. Electrochem. Soc., 139 (1992), pp. 2477-2490.
Berning T., Lu D.M. and Djilali N., “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, J. Power Sources, 106 (2002), pp. 284-294.
Fuller T. F., Newman J., “Experimental determination of the transport number of water in Nafion 117 membrane”, J. Electrochem. Soc., 139 (1992), pp. 1332-1339.
Fuller T. F., Newman J., “Water and thermal management in solid-polymer- electrolyte fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 1218-1225.
Grujicic M., Chittajallu K. M., “Design and optimization of polymer electrolyte membrane (PEM) fuel cells”, Applied Surface Science, 227 (2004), pp. 56-72.
Gurau V., Barbir F., Liu H., “An analytical solution of a half-cell model for PEM fuel cells”, J. Electrochem. Soc., 147 (2000), pp. 2468-2477.
Hoogers G., Fuel Cell Technology Handbook, CRC Press, New York, 2003.
Karimi G., Li X., “Electroosmotic flow through polymer electrolyte membrane in PEM fuel cells”, J. Power Sources, 140 (2005), pp. 1-11.
Kazim A., Forges P., Liu H. T., “Effects of cathode operating conditions on performance of a PEM fuel cell with interdigitated flow fields”, Int. J. Energy Research, 27 (2003), pp. 401-414.
LaConti A. B., Fragala A. R., Boyack J. R.. in: McIntyre D. E., Srinivasan S., Will E. G., Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, vol. 77, 1991, pp.354
Marr C., Li X., “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell”, J. Power Sources, 77 (1999), pp. 17-27.
Nguyen T. V., White R. E., “A water and heat management model for proton-exchange-membrane fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 2178-2186.
Springer T. E., Zawodzinski T. A., Gottesfeld S., “Polymer electrolyte fuel cell model”, J. Electrochem. Soc., 138 (1991), pp. 2334-2341.
Springer T. E., Wilson M. S., Gottesfeld S., “Modeling and experimental diagnostics in polymer electrolyte fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 3513-3526.
Um S., Wang C. Y., Chen K. S., “Computational fluid dynamics modeling of proton exchange membrane fuel cells”, J. Electrochem. Soc., 147 (2000), pp. 4485-4493.
Wang C. Y., Cheng P., “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-I. Model development”, Int. J. Heat and Mass Transfer, 39 (1996), pp. 3607-3618.
Wang C. Y., Cheng P., “Multiphase flow and heat transfer in porous media”, Adv. Heat Transfer, 30 (1997), pp. 93-196.
Wang Y., Wang C.Y., “Transient analysis of polymer electrolyte fuel cells”, Electrochim. Acta, 50 (2005), pp. 1307-1315.
Wang Z. H., Wang C. Y. and Chen K. S., “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells”, J. Power Sources, 94 (2001), pp. 40-50.
Xie G., Okada T., “Water transport behavior in Nafion 117 membranes”, J. Electrochem. Soc., 142 (1995), pp. 3057-3062.
You L., Liu H., “A two-phase flow and transport model for the cathode of PEM fuel cells”, Int. J. Heat and Mass Transfer, 45 (2002), pp. 2277-2287.
Zawodzinski Th. A., Radzinski S., Sherman R. J., Smith V. T., Springer T. E., Gottesfeld S., “Water uptake by and transport through Nafion 117 membranes”, J. Electrochem. Soc., 140 (1993), pp. 1041-1047.
Zawodzinski Th. A., Davey J., Valerio J., Gottesfeld S., “The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes”, Electrochim. Acta, 40 (1995), pp. 297-302.
指導教授 吳俊諆、曾重仁
(Jiunn-Chi Wu、Chung-Jen Tseng)
審核日期 2006-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明