參考文獻 |
[1] A. R. Patwary, B. M. Geuskens, and S. L. Lu, “Content addressable memory for low-power and high-performance applications,” in Computer Science and Information Engineering, March 31-April 2 2009, pp. 423–427.
[2] H. Noda, K. Dosaka, F. Morishita, and K. Arimoto, “A soft-error-immune maintenance-free TCAM architecture with associated embedded DRAM,” in Proc. IEEE Custom Integrated
Circuits Conf. (CICC), Sept. 2005, pp. 451–454.
[3] K. Pagiamtzis, N. Azizi, and F. N. Najm, “A soft-error tolerant content-addressable memory (CAM) using an error-correcting-match scheme,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2006, pp. 301–304.
[4] N. Derhacobian, V. A. Vardanian, and Y. Zorian, “Embedded memory reliability: the SER challenge,” in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 2004, pp. 104–110.
[5] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches,” IEEE Jour. of Solid-State Circuits, vol. 43, no. 4, pp. 956–963, Apr. 2008.
[6] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, H. Kawaguchi, and M. Yoshimoto, “An area-conscious low-voltage-oriented 8T-SRAM design under DVS environment,” in Symp. on VLSI Circuit, Digest of Technical Papers, June 2007, pp. 256–257.
[7] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric, S. J. Mcnab, A. W. Topol, C. D. Adams, K. W. Guarini, and W. Haensch, “Stable SRAM cell design for the 32 nm node and beyond,” in Symp. VLSI technical Dig., June 2008, pp. 128–129.
[8] L. Chang, Y. Nakamura, R. K. Montoye, J. Sawada, A. K. Martin, K. Kinoshita, F. H. Gebara, K. B. Agarwal, D. J. Acharyya, W. Haensch, K. Hosokawa, and D. Jamsek, “A 5.3GHz 8TSRAM with operation down to 0.41V in 65nm CMOS,” in Symp. on VLSI Circuit, Digest of Technical Papers, June 2007, pp. 252–253.
[9] B. H. Calhoun and A. Chandrakasan, “A 256 kb sub-threshold SRAM in 65 nm CMOS,”IEEE Jour. of Solid-State Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007.
[10] T. Kim, J. Liu, J. Keane, , and C. H. Kim, “A high-density subthreshold SRAM with dataindependent
bitline leakage and virtual ground replica scheme,” IEEE Jour. of Solid-State Circuits, vol. 43, no. 2, pp. 518–529, Feb. 2008.
[11] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” IEEE Jour. of Solid-State Circuits, vol. 44, no. 2, pp. 650–658, Feb. 2009.
[12] J. Lohstroh, E. Seevinck, and J. Groot, “Worst-case noise margin criteria for logic circuits and their mathematical equivalence,” IEEE Jour. of Solid-State Circuits, vol. SC-18, pp. 803–806, Dec. 1983.
[13] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,”
IEEE Jour. of Solid-State Circuits, vol. 22, no. 5, pp. 748–754, Oct. 1987.
[14] S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y.Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara, and H. Akamatsu,“An 45 nm 2-port 8T-SRAM using hierarchical replica bitline technique with immunity from simultaneous R/W access issues,” IEEE Jour. of Solid-State Circuits, vol. 43, no. 4, pp. 938–945, Apr. 2008.
[15] T.-H. Kim, J. Liu, and C. H. Kim, “An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2007, pp. 241–244.
[16] A. J. Bhavnagarwala, S. V. Kosonocky, S. P. Kowalczyk, R. V. Joshi, Y. H. Chan, U. Srinivasan, and K. Wadhwa, “A transregional CMOS SRAM with single logic VDD and dynamic
power rails,” in Symposium on VLSI Circuits, 2004, pp. 292–293.
[17] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “A 3-GHz 70Mb SRAM in 65nm CMOS technology with integrated
column-based dynamic power supply,” in Proc. IEEE Int’l Solid-State Cir. Conf. (ISSCC), Feb. 2005, pp. 474–475.
[18] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishi, and H. Kobatake, “A read-write-noise–margin-free SRAM cell for low-VDD and high-speed applications,” IEEE Jour. of Solid-State Circuits, vol. 41, no. 1, pp. 113–121, Jan. 2006.
[19] N. Verma and A. P. Chandrakasan, “A 256kb 65nm 8T subthreshold SRAM employing senseamplifier redundancy,” IEEE Jour. of Solid-State Circuits, vol. 43, no. 4, pp. 938–945, Apr. 2008.
[20] J. Singh, D. K. Pradhan, S. Hollis, S. P. Mohanty, and J. Mathew, “Single ended 6T SRAM with isolated read-port for low-power embedded systems,” in Proc. Conf. Design, Automation, and Test in Europe (DATE), April 2009, pp. 917–922.
[21] W. K. Al-Assadi, A. P. Jayasumana, and Y. K. Malaiya, “On fault modeling and testing of content-addressable memories,” in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), 1994, pp. 78–81.
[22] K.-J. Lin and C.-W. Wu, “Testing content-addressable memories using functional fault models and March-like algorithms,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 5, pp. 577–588, May 2000.
[23] Y.-J. Chang and Y.-H. Liao, “Hybrid-type CAM design for both power and performance efficiency,” IEEE Trans. on VLSI Systems, vol. 16, no. 8, pp. 965 – 974, Aug. 2008.
[24] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using heavy-ion radiation to validate fault-handling mechanisms,” IEEE Micro, vol. 14, no. 1, pp. 8–23, Feb. 1994.
[25] J. Sosnowski, “Transient fault tolerance in digital systems,” IEEE Micro, vol. 14, no. 1, pp. 24–35, Feb. 1994.
[26] S. Kim and A. K. Somani, “Area efficient architectures for information integrity in cache memories,” International Symposium on Computer Architecture, vol. 27, no. 2, pp. 246–255, May 1999.
[27] S. Mitra, N. Kee, and S. Kim, “Robust system design with built-in soft-error resilience,” IEEE Computer, vol. 38, no. 2, pp. 43–52, Feb. 2005.
[28] K. Bhattacharya, N. Ranganathan, and S. Kim, “A framework for correction of multi-bit soft errors in L2 caches based on redundancy,” IEEE Trans. on VLSI Systems, vol. 17, no. 2, pp. 194–206, Feb. 2009.
[29] F. J. Aichelman and Jr., “Fault-tolerant design techniques for semiconductor memory applications,”
IBM J. Research and Development, vol. 28, pp. 177–183, Mar. 1984.
[30] D. B. Sarrazin and M. Malek, “Fault-tolerant semiconductor memories,” IEEE Computer, vol. 17, no. 8, pp. 49–56, Aug. 1984.
[31] A. Saleh, J. Serrano, and J. Patel, “Software-implemented EDAC protection against SEUs,”IEEE Trans. on Reliability, vol. 49, no. 3, pp. 273–284, Sept. 2000.
[32] R. M. Goodman and M. Sayano, “The reliability of semiconductor RAM memories with on-chip error-correction coding,” IEEE Trans. on Information Theory, vol. 37, no. 3, pp.884–896, MAY 1991.
[33] D. G. Mavis, P. H. Eaton, M. D. Sibley, R. C. Lacoe, E. J. Smith, and K. A. Avery, “Multiple bit upsets and error mitigation in ultra-deep submicron SRAMs,” IEEE Trans. on Nuclear Science, vol. 55, no. 6, pp. 3288–3294, Dec. 2008.
[34] S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache scrubbing in Microprocessors:
myth or necessity?” in IEEE Pacific Rim International Symposium on Dependable Computing, March 2004, pp. 37–42.
[35] G. Neuberger, F. D. Lima, L. Carro, and R. Reis, “A multiple bit upset tolerant SRAM memory,”ACM TODAES, vol. 8, no. 4, pp. 577–590, Oct. 2003.
[36] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H. J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima,
K. Anami, and T. Yoshihara, “A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture,” IEEE Jour. of Solid-State Circuits, vol. 40, no. 1, pp. 245–253, Jan. 2005.
[37] S. C. Krishnan, R. Panigrahy, and S. Parthasarathy, “Error-correcting codes for ternary content addressable memories,” IEEE Trans. on Computers, vol. 58, no. 2, pp. 275–279, Feb. 2009.
[38] S. M. Abdel-hafeez and S. P. Sribhashyam, “System and method for efficiently implementing double data rate memory architecture,” US patent, no. 6,356,509, March 12 2002.
[39] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8–14, Mar. 1993.
[40] A. J. van de Goor and S. Hamdioui, “Fault models and tests for two-port memories,” in Proc. IEEE VLSI Test Symp. (VTS), 1998, pp. 401–410.
[41] K. J. Schultz, “Content-addressable memory core cells: a survey,” Integration, the VLSI J., vol. 23, pp. 171–188, 1997.
[42] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise margin for subthreshold SRAM in 65nm CMOS,” in European Solid-State Circuits Conf. (ESSCIRC), Sept. 2005, pp. 363–366.
[43] E. Grossar, M. Stucchi, K. Maex, and W. Dehaene, “Read stability and write-ability analysis of SRAM cells for nanometer technologies,” IEEE Jour. of Solid-State Circuits, vol. 41, no. 11, pp. 2577–2588, Nov. 2006.
[44] K.-J. Lin and C.-W. Wu, “A low-power CAM design for LZ data compression,” IEEE Trans. on Computers, vol. 49, no. 10, pp. 1139–1145, Oct. 2000.
[45] A. Saleh, J. Serrano, and J. Patel, “Reliability of scrubbing recovery-techniques for memory systems,” IEEE Trans. on Reliability, vol. 39, no. 1, pp. 114–122, Apr. 1990.
[46] J. A. Maestro and P. Reviriego, “Reliability of single-error correction protected memories,”IEEE Trans. on Reliability, vol. 58, no. 1, pp. 193–201, March 2009.
[47] M. Ottavi, L. Schiano, F. Lombardi, S. Pontarelli, and G. C. Cardarilli, “Evaluating the data integrity of memory systems by configurable Markov models,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI, May 2005, pp. 257 – 259.
[48] C.-L. Su, Y.-T. Yeh, and C.-W. Wu, “An integrated ECC and redundancy repair scheme for memory,” in Proc. IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI Systems (DFT), 2005, pp. 81–89.
|