博碩士論文 945401028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.118.146.163
姓名 楊疎涵(Shu-han Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 直接甲醇燃料電池之阻抗分析與控制設計
(Impedance based analysis and control design for an operating direct methanol fuel cell)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究直接甲醇燃料電池之阻抗分析與控制設計問題。藉由使用氯化銀參考電極,即時的量測直接甲醇燃料電池在不同的空氣流量、甲醇流量、甲醇濃度、溫度與電流密度操作下,其陽極、陰極以及全電池之電化學阻抗頻譜,並將其結果對應於極化曲線 (polarization curve) 進行有系統之比較。再者,針對陰極溢流 (water flooding) 問題進行詳細研究。為了能更清楚的解析在直接甲醇燃料電池中陽極內部的所有反應,提出有效的等效電路選取規則,能分別針對於穩定操作以及質傳限制 (mass transport limitation) 下的陽極阻抗頻譜進行模擬,並以合適之等效電子元件進行陽極內部反應分析。除此之外,並使用上述之分析結果,導入阻抗頻譜分析之高頻阻抗 (high frequency resistance) 與電荷轉移阻抗 (charge transfer resistance) 為控制輸入變數,設計一模糊控制器來有效的調整陰極空氣量大小,以維持直接甲醇燃料電池之功率輸出穩定度。藉由本論文中有層次漸進的討論證明阻抗分析可以提供對於甲醇燃料電池內部反應之了解,並可藉此發展出燃料電池系統之最佳化控制設計,以利於未來商業化發展。
摘要(英) This dissertation proposes the impedance based analysis and control design for an operating direct methanol fuel cell (DMFC) system. By using a silver/silver chloride electrode as the extended reference electrode, the electrochemical impedance spectroscopy (EIS) response of the real anode, real cathode, and full-cell impedance, corresponding to the polarization curves, are systematically investigated as a function of air and methanol flow rates, methanol concentrations, cell temperatures, and current densities. Water flooding in the cathode was also examined. For clearly interpreting each physic-chemical phenomenon in a DMFC anode, the selection of electrical equivalent circuits (EECs) of the anode impedance response at the stable operation and the mass transport limitation are developed. The suitable electrical elements of different EEC models can provide a clearly understanding of a DMFC during various operations. Furthermore, by applying the impedance characteristic of high frequency resistance (HFR) and charge transfer resistance (CTR) as the control input, the control strategy, based on the fuzzy logic, is designed to adjust the cathodic air stoichiometric flow for preventing the performance drops of a DMFC caused by flooding and drying. It is sufficient to assist the stack in reacting at an optimal operating state and can reduce the measuring time of impedance during the real-time control process. Although the influences of operating temperature on the state of system are not accounted, this fuzzy controller has the adaptability to run even if the stack is operated at various temperatures. The series of proposed work in this dissertation indicates that the EIS technique is a powerful to understand the operating and failure mechanism in view of the performance and durability of DMFC under the practical application and thus to develop an optimal control for preventing the deterioration of DMFC.
關鍵字(中) ★ 阻抗分析
★ 直接甲醇燃料電池
關鍵字(英) ★ direct methanol fuel cell
★ electrochemical impedance spectroscopy
★ electrical equivalent circuits
論文目次 Abstract . i
Acknowledgement . iii
Contents . v
List of Figure . ix
List of Tables . xiii
List of Nomenclature . xiv
Chapter 1 Introduction
1.1 Objective . 1
1.2 Overview of previous works . 2
1.2.1 The impedance measurement of a direct methanol fuel cell
(DMFC). 3
1.2.2 Physical and electrochemical equivalent circuit model. 5
1.3 Organization of the dissertation . 7
Chapter 2 Description and preparation of a DMFC
2.1 Mechanism descriptions of a DMFC . 11
2.2 Fabrication of MEA . 13
2.3 Break-in procedure and cell operation .17
2.4 Summary . 20
Chapter3 Application of electrochemical impedance
spectroscopy (EIS) for a DMFC
3.1 EIS technique . 21
3.1.1 The basic impedance measurement . 21
3.1.2 EIS measurement system and analysis . 24
3.2 Preparation of the reference electrode . 29
3.2.1 Review of a reference electrode for a DMFC. 29
3.2.2 Setup of a reference electrode . 31
3.2.3 The stability of a reference electrode . 32
3.3 Summary . 35
Chapter 4 Impedance characterizations of an operating DMFC
4.1 Overview . 37
4.2 Effects of air flow rates . 38
4.3 Effects of methanol flow rates . 41
4.4 Effects of methanol concentrations . 44
4.5 Effects of cell temperatures . 47
4.6 Effects of operating current densities . 50
4.7 Effects of cathode water flooding .53
4.8 Summary . 56
Chapter 5 Electrical equivalent circuit (EEC) of DMFC anode
5.1 Overview . 58
5.2 Theoretical approach using a rational function . 59
5.3 Transformation rules .64
5.4 An illustrative example . 67
5.5 Summary . 74
Chapter 6 The EEC of the anode diffusion behaviors in a DMFC
6.1 Overview . 76
6.2 An extended mathematical model . 77
6.3 Transformation rules of the extended mathematical model . 82
6.4 An illustrative example . 88
6.5 Summary .91
Chapter 7 Impedance based fuzzy logic control of the air flow in
a DMFC system
7.1 Overview . 92
7.2 Phenomena and problem formulation . 93
7.3 Fuzzy Logic Method . 97
7.4 Experiment results . 104
7.5 Summary . 106
Chapter 8 Conclusion. 108
Future Work . 113
Reference . 114
Publication List . 128
參考文獻 [1] K. R. Cooper, “Electrical test methods for on-line fuel cell ohmic resistance measurement,” J. Power Sources, vol. 160, pp. 1088-1095, 2006.
[2] J. P. Meyers and J. Newman, “Simulation of the Direct Methanol Fuel Cell- II. Modeling and Data Analysis of Transport and Kinetic Phenomena,” J. Electrochem. Soc., vol. 149, pp. A718-728, 2002.
[3] J. T. Mueller and P. M. Urban, “Characterization of direct methanol fuel cells by AC impedance spectroscopy,” J. Power Sources, vol. 75, pp. 139-143, 1998.
[4] J. T. Mueller, P. M. Urban, and W. F. Holderrich, “Impedance studies of Direct Methanol Fuel Cell Anodes,” J. Power Sources, vol. 84, pp. 157-169, 1999.
[5] J. C. Amphlett, B. A. Peppley, E. Halliop, and A. Sadiq, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell,” J. Power Sources, vol. 96, pp. 204-213, 2001.
[6] J. P. Diard, N. Glandut, P. Landaud, B. L. Gorrec, and C. Montella, “A method for determining anode and cathode impedances of a direct methanol fuel cell running on a load,” Electrochim. Acta, vol. 48, pp. 555-562, 2003.
[7] X. Wang, J. M. Hu, I. and M. Hsing, “Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion® membrane,” J. Electroanal. Chem., vol. 562, pp. 73-80, 2004.
[8] H. Fukunaga, T. Ishida, N. Teranishi, C. Arai, and K. Yamada, “Impedance of vapor feed direct methanol fuel cells—polarization dependence of elementary processes at the anode,” Electrochim. Acta, vol. 49, pp. 2123-2129, 2004.
[9] T. Vidakovic, M. Christov, and K. Sundmacher, “Investigation of electrochemical oxidation of methanol in a cyclone flow cell,” Electrochim. Acta, vol. 49, pp. 2179-2187, 2004.
[10] J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. Kim, “Performance and impedance under various catalyst layer thicknesses in DMFC,” Electrochim. Acta, vol. 50, pp. 807-810, 2004.
[11] X. Zhao, X. Fan, S. Wang, S. Yang, B. Yi, Q. Xin, and G. Sun, “Determination of ionic resistance and optimal composition in the anodic catalyst layers of DMFC using AC impedance,” Int. J. Hydrogen Energy, vol. 30, pp. 1003-1010, 2005.
[12] K. Furukawa, K. Okajima, and M. Sudoh, “Structural control and impedance analysis of cathode for direct methanol fuel cell,” J. Power Sources, vol. 139, pp. 9–14, 2005.
[13] A. Oedegaard, “Characterisation of direct methanol fuel cells under near-ambient conditions,” J. Power Sources, vol. 157, pp. 244-252, 2006.
[14] W. Chen, G. Sun, J. Guo, X. Zhao, S. Yan, J. Tian, S. Tang, Z. Zhou, and Q. Xin, “Test of the degradation of direct methanol fuel cell,” Electrochim. Acta, vol. 51, pp. 2391-2399, 2006.
[15] D. Chakraborty, I. Chorkendorff, and T. Johannessen, “Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation,” J. Power Sources, vol. 162, pp. 1010-1022, 2006.
[16] J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares, and A. F. Fragua, “Application of Sterion Membrane as Polymer Electrolyte for DMFCs,” Chem. Eng. Sci., vol. 61, pp. 4773-4782, 2006.
[17] H. Kim, S. J. Shin, Y. G. Park, J. Song, and H. T. Kim, “Determination of DMFC deterioration during long-term operation,” J. Power Sources, vol. 160, pp. 440-445, 2006.
[18] T. Schultz, U. krewer, T. Vidakovic, M. Pfafferodt, M. Christov, and K. Sundmacher, “Systematic analysis of the direct methanol fuel cell,” J. Appli. Electrochem., vol. 37, pp. 111-119, 2007.
[19] C. Y. Du, T. S. Zhao, and W. W. Yang, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC : A Half – Cell Investigation,” Electrochim. Acta, vol. 52, pp. 5266-5271, 2007.
[20] K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, “Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst,” J. Power Sources, vol. 164, pp. 33-41, 2007.
[21] J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, “The influence of anode gas diffusion layer on the performance of low-temperature DMFC,” J. Power Sources, vol. 168, pp. 453-458, 2007.
[22] J. K. Lee, J. Choi, S. J. Kang, J. M. Lee, Y. Tak, and J. Lee, “Influence of copper oxide modification of a platinum cathode on the activity of direct methanol fuel cell,” Electrochim. Acta, vol. 52, pp. 2272-2276, 2007.
[23] S. R. Narayanan, A. Kinder, B. J. Nakamura, W. Chun, H. Frank, M. Smart, T. I. Valdez, S. Surampudi, G. Halpert, J. Kosek, and C. Cropley, “Polymer/Nano-Inorganic Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application,” in Proceedings of 11th, Annu. Battery Conf. Appl. Adv. 11, pp. 113-122, 2007.
[24] Y. Kim, W. Hong, S. Woo, and H. Lee, “Analysis of the polarization of a direct methanol fuel cell using a pseudo-reversible hydrogen reference electrode,” J. Power Sources, vol. 159, pp. 491-500, 2006.
[25] C. Y. Du, T. S. Zhao, and C. Xu, “Simultaneous oxygen-reduction and methanol-oxidation reactions at the cathode of a DMFC: A model-based electrochemical impedance spectroscopy study,” J. Power Sources, vol. 167, pp. 265-271, 2007.
[26] N. Y. Hsu, S. C. Yen, K. T. Jeng, and C. C. Chien, “Impedance studies and modelling of direct methanol fuel cell anode with interface and porous structure perspectives,” J. Power Sources, vol. 161, pp. 232-239, 2006.
[27] H. Tang, S. Wang, M. Pan, S. P. Jiang, and Y. Ruan, “Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM),” Electrochim. Acta, vol. 52, pp. 3714-3718, 2007.
[28] E. V. Gheem, E. ourwe, R. Pintelon, and A. Hubin, “A theoretical approach for modelling electrochemical impedance measurements using a rational function in ,” J. Electroanal. Chem., vol. 613, pp. 1860-192, 2008.
[29] W. Sugimoto, K. Aoyama, T. Kawaguchi, Y. Murakami, and Y. Takasu, “Kinetics of CH3OH oxidation on PtRu/C studied by impedance,” J. Electroanal. Chem., vol. 579, pp. 215-221, 2005.
[30] U. Krewer, M. Christov, T. Vidakovic, and K. Sundmacher, “Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics,” J. Electroanal. Chem., vol. 589, pp. 148-159, 2006.
[31] C.Y. Chen, P. Yang, Y.S. Lee, and K.F. Lin, “Fabrication of electrocatalyst layers for direct methanol fuel cells,” J. Power Sources, Vol. 141, pp. 24–29, 2005.
[32] C. Y. Chen, J. Y. Shiu, and Y. S. Lee, “Development of a small DMFC bipolar plate stack for portable applications,” J. Power Sources, Vol. 159, pp. 1042-1047, 2006.
[33] S. Eccarius, T. Manurung, and C. Ziegler, “On the reliability of measurements including a reference electrode in DMFCs,” J. Electrochem. Soc., vol. 154, pp. B852-864, 2007.
[34] M. A. Hickner, “Transport and Structure in Fuel Cell Proton Exchange Membranes,” Dissertation, The faculty of Virginia Polytechnic Institute and State University, 2003.
[35] E. Barsoukov and J. R. Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applixations,” Wiley & Sons, 2005, pp. 170-171.
[36] H. Dohle, J. Divisek, J. Mergel, H. F. Otjen, C. Zingler, and D. Stolten, “Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell,” J. Power Sources, vol. 105, pp. 274-282, 2002.
[37] X. Ren, T. E. Springer, and S. Gottesfeld, “Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance,” J. Electrochem. Soc. vol. 147, pp. 92-98, 2000.
[38] A. Kuver and W. Vielstich, “Investigation of methanol crossover and single electrode performance during PEMDMFC operation A study using a solid polymer electrolyte membrane fuel cell system,” J. Power Sources, vol. 74, pp. 211-218, 1998.
[39] S. Mitsushima, N. Araki, N. Kamiya, and K. Ota, “Analysis of Oxygen Reduction on Pt Microelectrode with Polymer Electrolytes of Various Exchange Capacities,” J. Electrochem. Soc., vol. 149, pp. A1370-1375, 2002.
[40] T. E. Springer, M. S. Wilson, and S. Gottesfeld, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., vol. 140, pp. 3513-3526, 1993.
[41] S. Enback and G. Lindbergh, “Experimentally Validated Model for CO Oxidation on PtRu/C in a Porous PEFC Electrode,” J. Electrochem. Soc., vol. 152, pp. A23-31, 2005.
[42] P. Piela, T. E. Springer, J. Davey, and P. Zelenay, “Direct measurement of iR-free individual-electrode overpotentials in polymer electrolyte fuel cells,” J. Phys. Chem. C, vol. 111, pp. 6512-6523, 2007.
[43] Z. Liu, J. S. Wainright, W. Haung, and R. F. Sacinell, “Positioning the reference electrode in proton exchange membrane fuel cells: calculations of primary and secondary current distribution,” Electrochim. Acta, vol. 49, pp. 923-935, 2004.
[44] S. Eccarius, T. Manurung, and C. Ziegler, “On the reliability of measurements Including a reference electrode in DMFCs,” J. Electrochem. Soc., vol. 154, pp. B852-864, 2007.
[45] M. Seo, Y. Yun, J. Lee, and Y. Tak, “Electrochemical characteristics of chloride ion modified Pt cathode in direct methanol fuel cells,” J. Power Sources, vol. 159, pp. 59-62, 2006.
[46] S. Uhm, T. Noh, Y. D. Kim, and J. Lee, “Enhancement of methanol tolerance in DMFC cathode: Addition of chloride ions,” Chemphyschem, vol. 9, pp. 1425-1429, 2008.
[47] X. Zhao, G. Sun, L. Jiang, W. Chen, S. Tang, and Q. Xin, “Effects of Chloride Anion as a Potential Fuel Impurity on DMFC Performance,” Electrochem. Solid-state Lett., vol. 8, pp. A149-151, 2005.
[48] J. O. Schumacher, P. Gemmar, M. Denne, M. Zedda, and M. Stueber, “Control of miniature proton exchange membrane fuel cells based on fuzzy logic,” J. Power Sources, vol. 129, pp. 143-151, 2004.
[49] Y. Liu, X. Qiu, W. Zhu, and G. U, “Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode,” J. Power Sources, vol. 114, pp. 10-14, 2003.
[50] I. M. Hsing, X. Wang, and Y. J. Leng, “Electrochemical Impedance Studies of Methanol Electro-oxidation on Pt/C Thin Film Electrode,” J. Electrochem. Soc., vol. 149, pp. A615-A621, 2002.
[51] R. Pintelon and J. Schoukens, “System Identification: a Frequency Domain Approach,” IEEE Press, Piscataway, USA, 2001.
[52] J. Verbeeck, R. Pintelon, and P. Guillaume, “Parameter determination for modeling system transients - Part IV: rotating machines,” IEEE Trans. Energy Conver., vol. 14, pp. 310–314, 1999.
[53] J. Verbeeck, R. Pintelon, and P. Lataire, “Identification of synchronous machine parameters using a multipleinput multiple output approach,” IEEE Trans. Energy Conver., vol. 14, pp. 909–917, 1999.
[54] P. Zoltowski, “A new approach to the measurement modeling in electrochemical impedance spectroscopy,” J. Electroanal. Chem. vol. 375, pp. 45–57, 1994.
[55] P. Zoltowski, “The power of reparametrization of measurement models in electrochemical impedance spectroscopy,” J. Electroanal. Chem., vol. 424, pp. 173-178, 1997.
[56] P. Zoltowski, “Non-traditional Approach to Measurement Models for Analysis of Impedance Spectra,” Solid State Ionics, vol. 176, pp. 1979–1986, 2005.
[57] A. Sadkowski, “On specific properties of electrochemical immittance close to discontinuity point,” Electrochim. Acta, vol. 49, pp. 2653–2659, 2004.
[58] A. Sadkowski, “CNLS fits and Kramers-Kronig validation of resonant EIS data,” J. Electroanal. Chem., vol. 573, pp. 241–253, 2004.
[59] A. Sadkowski, “Unusual electrochemical immittance spectra with negative resistance and their validation by Kramers–Kronig transformation,” Solid State Ionics, vol. 176, pp. 1987–1996, 2005.
[60] L. Pauwels, W. Simons, A. Hubin, J. Schoukens, and R. Pintelon, “Key issues for reproducible impedance measurements and their well-founded error analysis in a silver electrodeposition system,” Electrochim. Acta, vol. 47, pp. 2135–2141, 2002.
[61] K. Zou, J. Hu, and X. Kong, “The structure optimized fuzzy clustering neural network model and its application,” International Journal of Innovative Computing, Information And Control, vol.4, no.7, pp.1627-1634, 2008.
[62] S. Onut and C. O. Saglam, “Modeling and optimization of generl cargo port operations through fuzzy minimal spanning tree and fuzzy dynamic programming approaches,” International Journal of Innovative Computing, Information And Control, vol.4, no.8, pp.1835-1851, 2008.
[63] W. H. Ho, “Optimal state-feedback control of time-varying TS-fussy- model-based systems by using an integrative computational approach,” International Journal of Innovative Computing, Information And Control, vol.3, no.4, pp.873-885, 2007.
[64] X. Hu, Y. Li, J. Guo, L. Sun, and A. Z. Zeng, “A simulation optimization algorithm with heuristic transformation and its application to vehicle routing problems,” International Journal of Innovative Computing, Information And Control, vol.4, no.5, pp.1169-1181, 2008.
[65] C. C. Chen and C. S. Lin, “A GA-based nearly optimal image authentication approach,” International Journal of Innovative Computing, Information And Control, vol.3, no.3, pp.631-640, 2007.
[66] M. Basin, J. Perez, and D. C. Alvarez, “Optimal filtering for linear systems over polynomial observations,” International Journal of Innovative Computing, Information And Control, vol.4, no.2, pp.313-320, 2008.
[67] K. Zou, J. Hu, and X. Kong, “The structure optimized fuzzy clustering neural network model and its application,” International Journal of Innovative Computing, Information And Control, vol.4, no.7, pp.1627-1634, 2008.
[68] S. Onut and C. O. Saglam, “Modeling and optimization of generl cargo port operations through fuzzy minimal spanning tree and fuzzy dynamic programming approaches,” International Journal of Innovative Computing, Information And Control, vol.4, no.8, pp.1835-1851, 2008.
[69] P. Zhong and L. Wang, “support vector regression with input data uncertainty,” International Journal of Innovative Computing, Information And Control, vol.4, no.9, pp.2325-2332, 2008.
[70] V. Dragan and T. Morozan, “The linear quadratic optimization problem for a calss of discrete-time stochastic linear systems,” International Journal of Innovative Computing, Information And Control, vol.4, no.9, pp.2127-2137, 2008.
[71] Z. Cui, X. Cai, and J. Zeng, “Chaotic performance-dependent particle swarm optimization,” International Journal of Innovative Computing, Information And Control, vol.5, no.4, pp.951-960, 2009.
[72] Y. Takeuchi, “Optimal transmission of a set of discrete-time gaussian signals through channels with feedback,” International Journal of Innovative Computing, Information And Control, vol.2, no.5, pp.927-942, 2006.
[73] M. Matsubara, Y. Usui, and S. Sugimoto, “Identification of continuous-time MIMO systems via sampled data,” International Journal of Innovative Computing, Information And Control, vol.2, no.5, pp.927-942, 2006.
[74] Y. Takeuchi and A. Hirata “A method of optimization of linear observations for the kalman filter based on a generalized water filling theorema,” International Journal of Innovative Computing, Information And Control, vol.5, no.1, pp.75-85, 2009.
[75] M. E. Orazem, “An integrated approach to electrochemical impedance spectroscopy,” J. electroanal. Chem., vol. 572, pp. 317-327, 2004.
[76] J. R. Macdonald and J. A. Garber, “Analysis of impedance and admittance data for solids and liquids,” J. Electrochem. Soc., vol. 124, pp. 1022-1030, 1977.
[77] J. R. Macodonald, J. Schoonman, and A. P. Lehnen, “The Applicability and Power of Complex Nonlinear Least Squares for the Analysis of Impedance and Admittance Data,” J. Electrochem. Soc., vol. 131, pp. 77-95, 1982.
[78] E. V. Gheem, R. Pintelon, J. Vereecken, J. Schoukens, A. Hubin, P. Verboven, and O. Blajiev, “Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour Part I: theory and validation,” Electrochim. Acta, vol. 49, pp. 4753–4762, 2004.
[79] X. Wu, W. Zhang, and H. Yu, “Assessing nonlinearity in impedance model: the model characteristics of an equivalent circuit with a CPE,” J. Electroanal. chem., vol. 398, pp. 1-4, 1995.
[80] D. Vladikova and Z. Stoynov, “Secondary differential impedance analysis – a tool for recognition of CPE behaviour,” J. Electroanal. chem., vol. 572, pp. 377-387, 2004.
[81] J. B. Jorcin, M. E. Orazem, N. Pebere, and B. Tribollet, “CPE analysis by local electrochemical impedance spectroscopy,” Electrochim. Acta, vol. 51, pp. 1473–1479, 2006.
[82] T. Kurz, A. Hakenjos, J. Krämea, M. Zedda, and C. Agert, “An impedance-based predictive control strategy for the state-of-health of PEM fuel cell stacks,” J. Power Sources, vol. 180, pp. 742–747, 2008.
[83] N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy and B. Ould-Bouamama, “Model based PEM fuel cell state-of-health monitoring via ac impedance measurements,” J. Power Sources, vol. 159, pp. 905–913, 2006.
[84] T. Springer, T. Zawodzinski, M. Wilson, and S. Gottesfeld, “Simulation of the Direct Methanol Fuel Cell. II. Modeling and Data Analysis of Transport and Kinetic Phenomena,” J. Electrochem. Soc., vol. 143, pp. 587-599, 1996.
[85] V. Paganin, C. Oliveira, E. Ticianelli, T. Springer, and E. Gonzales, “Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell,” Electrochim. Acta, vol. 43, pp. 3761-3766, 1998.
[86] T. S. Shih, J. S. Su, and J. S. Yao, “Fuzzy Linear Programming Based on Interval-valued Fuzzy Sets,” International Journal of Innovative Computing, Information and Control, vol.5, no.8, pp. 2081-2090, 2009.
[87] K. Kato and M, Sakawa, “An Interactive Fuzzy Satisficing Method Based on Simple Recourse Model for Multiobjective Linear Programming Problems Involving Random Variable Coefficients,” International Journal of Innovative Computing, Information and Control, vol.5, no.7, pp. 1997-2010, 2009.
[88] M. S. Ilic, “Fuzzy Regression Models on Entropy Based Blocking Structures,” International Journal of Innovative Computing, Information and Control, vol.5, no.6, pp. 1475-1483, 2009.
[89] K. Eguchi, S. Kurebayashi, H. Zhu, T. Inoue, and F. Ueno, “A Self-learning Support System for Pupils Based on a Fuzzy Scheme,” International Journal of Innovative Computing, Information and Control, vol.4, no.10, pp. 2441-2450, 2008.
[90] H. Han, “Fuzzy Controller Design with Input Saturation,” International Journal of Innovative Computing, Information and Control, vol.4, no.10, pp. 2507-2521, 2008.
[91] H. Y. Kao, C. H. Huang, T. C. Kao, and H. C. Kao, “Knowledge Modeling in Traditional Chinese Medicine with Fuzzy Influence Diagrams,” International Journal of Innovative Computing, Information and Control, vol.4, no.8, pp. 2057-2067, 2008.
[92] J. F. Chang, B. M. Hsu, M. H. Shu, and C. S. Yang “Fuzzy Inference for Assessing Process Lifetime Performance,” International Journal of Innovative Computing, Information and Control, vol.3, no.6, pp. 1729-1742, 2007.
[93] G. Zhi and S. Watanabe, “A Fuzzy Model for Bidding Behavior of Generators in Electricity Markets,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 953-966, 2007.
[94] W. G. Ma, “Design of Signal Fuzzy Controller of Single Intersection in Intelligence Transportation System,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 1023-1029, 2007.
[95] Y. Shi, P. Messenger, and M. Mizumoto, “Fuzzy Inference Modeling Based on Fuzzy Singleton-type Reasoning,” International Journal of Innovative Computing, Information and Control, vol.3, no.1, pp. 13-20, 2007.
指導教授 王文俊、陳長盈
(Wen-june Wang、Charn-Ying Chen)
審核日期 2010-4-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明