參考文獻 |
[1] K. R. Cooper, “Electrical test methods for on-line fuel cell ohmic resistance measurement,” J. Power Sources, vol. 160, pp. 1088-1095, 2006.
[2] J. P. Meyers and J. Newman, “Simulation of the Direct Methanol Fuel Cell- II. Modeling and Data Analysis of Transport and Kinetic Phenomena,” J. Electrochem. Soc., vol. 149, pp. A718-728, 2002.
[3] J. T. Mueller and P. M. Urban, “Characterization of direct methanol fuel cells by AC impedance spectroscopy,” J. Power Sources, vol. 75, pp. 139-143, 1998.
[4] J. T. Mueller, P. M. Urban, and W. F. Holderrich, “Impedance studies of Direct Methanol Fuel Cell Anodes,” J. Power Sources, vol. 84, pp. 157-169, 1999.
[5] J. C. Amphlett, B. A. Peppley, E. Halliop, and A. Sadiq, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell,” J. Power Sources, vol. 96, pp. 204-213, 2001.
[6] J. P. Diard, N. Glandut, P. Landaud, B. L. Gorrec, and C. Montella, “A method for determining anode and cathode impedances of a direct methanol fuel cell running on a load,” Electrochim. Acta, vol. 48, pp. 555-562, 2003.
[7] X. Wang, J. M. Hu, I. and M. Hsing, “Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion® membrane,” J. Electroanal. Chem., vol. 562, pp. 73-80, 2004.
[8] H. Fukunaga, T. Ishida, N. Teranishi, C. Arai, and K. Yamada, “Impedance of vapor feed direct methanol fuel cells—polarization dependence of elementary processes at the anode,” Electrochim. Acta, vol. 49, pp. 2123-2129, 2004.
[9] T. Vidakovic, M. Christov, and K. Sundmacher, “Investigation of electrochemical oxidation of methanol in a cyclone flow cell,” Electrochim. Acta, vol. 49, pp. 2179-2187, 2004.
[10] J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. Kim, “Performance and impedance under various catalyst layer thicknesses in DMFC,” Electrochim. Acta, vol. 50, pp. 807-810, 2004.
[11] X. Zhao, X. Fan, S. Wang, S. Yang, B. Yi, Q. Xin, and G. Sun, “Determination of ionic resistance and optimal composition in the anodic catalyst layers of DMFC using AC impedance,” Int. J. Hydrogen Energy, vol. 30, pp. 1003-1010, 2005.
[12] K. Furukawa, K. Okajima, and M. Sudoh, “Structural control and impedance analysis of cathode for direct methanol fuel cell,” J. Power Sources, vol. 139, pp. 9–14, 2005.
[13] A. Oedegaard, “Characterisation of direct methanol fuel cells under near-ambient conditions,” J. Power Sources, vol. 157, pp. 244-252, 2006.
[14] W. Chen, G. Sun, J. Guo, X. Zhao, S. Yan, J. Tian, S. Tang, Z. Zhou, and Q. Xin, “Test of the degradation of direct methanol fuel cell,” Electrochim. Acta, vol. 51, pp. 2391-2399, 2006.
[15] D. Chakraborty, I. Chorkendorff, and T. Johannessen, “Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation,” J. Power Sources, vol. 162, pp. 1010-1022, 2006.
[16] J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares, and A. F. Fragua, “Application of Sterion Membrane as Polymer Electrolyte for DMFCs,” Chem. Eng. Sci., vol. 61, pp. 4773-4782, 2006.
[17] H. Kim, S. J. Shin, Y. G. Park, J. Song, and H. T. Kim, “Determination of DMFC deterioration during long-term operation,” J. Power Sources, vol. 160, pp. 440-445, 2006.
[18] T. Schultz, U. krewer, T. Vidakovic, M. Pfafferodt, M. Christov, and K. Sundmacher, “Systematic analysis of the direct methanol fuel cell,” J. Appli. Electrochem., vol. 37, pp. 111-119, 2007.
[19] C. Y. Du, T. S. Zhao, and W. W. Yang, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC : A Half – Cell Investigation,” Electrochim. Acta, vol. 52, pp. 5266-5271, 2007.
[20] K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, “Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst,” J. Power Sources, vol. 164, pp. 33-41, 2007.
[21] J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, “The influence of anode gas diffusion layer on the performance of low-temperature DMFC,” J. Power Sources, vol. 168, pp. 453-458, 2007.
[22] J. K. Lee, J. Choi, S. J. Kang, J. M. Lee, Y. Tak, and J. Lee, “Influence of copper oxide modification of a platinum cathode on the activity of direct methanol fuel cell,” Electrochim. Acta, vol. 52, pp. 2272-2276, 2007.
[23] S. R. Narayanan, A. Kinder, B. J. Nakamura, W. Chun, H. Frank, M. Smart, T. I. Valdez, S. Surampudi, G. Halpert, J. Kosek, and C. Cropley, “Polymer/Nano-Inorganic Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application,” in Proceedings of 11th, Annu. Battery Conf. Appl. Adv. 11, pp. 113-122, 2007.
[24] Y. Kim, W. Hong, S. Woo, and H. Lee, “Analysis of the polarization of a direct methanol fuel cell using a pseudo-reversible hydrogen reference electrode,” J. Power Sources, vol. 159, pp. 491-500, 2006.
[25] C. Y. Du, T. S. Zhao, and C. Xu, “Simultaneous oxygen-reduction and methanol-oxidation reactions at the cathode of a DMFC: A model-based electrochemical impedance spectroscopy study,” J. Power Sources, vol. 167, pp. 265-271, 2007.
[26] N. Y. Hsu, S. C. Yen, K. T. Jeng, and C. C. Chien, “Impedance studies and modelling of direct methanol fuel cell anode with interface and porous structure perspectives,” J. Power Sources, vol. 161, pp. 232-239, 2006.
[27] H. Tang, S. Wang, M. Pan, S. P. Jiang, and Y. Ruan, “Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM),” Electrochim. Acta, vol. 52, pp. 3714-3718, 2007.
[28] E. V. Gheem, E. ourwe, R. Pintelon, and A. Hubin, “A theoretical approach for modelling electrochemical impedance measurements using a rational function in ,” J. Electroanal. Chem., vol. 613, pp. 1860-192, 2008.
[29] W. Sugimoto, K. Aoyama, T. Kawaguchi, Y. Murakami, and Y. Takasu, “Kinetics of CH3OH oxidation on PtRu/C studied by impedance,” J. Electroanal. Chem., vol. 579, pp. 215-221, 2005.
[30] U. Krewer, M. Christov, T. Vidakovic, and K. Sundmacher, “Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics,” J. Electroanal. Chem., vol. 589, pp. 148-159, 2006.
[31] C.Y. Chen, P. Yang, Y.S. Lee, and K.F. Lin, “Fabrication of electrocatalyst layers for direct methanol fuel cells,” J. Power Sources, Vol. 141, pp. 24–29, 2005.
[32] C. Y. Chen, J. Y. Shiu, and Y. S. Lee, “Development of a small DMFC bipolar plate stack for portable applications,” J. Power Sources, Vol. 159, pp. 1042-1047, 2006.
[33] S. Eccarius, T. Manurung, and C. Ziegler, “On the reliability of measurements including a reference electrode in DMFCs,” J. Electrochem. Soc., vol. 154, pp. B852-864, 2007.
[34] M. A. Hickner, “Transport and Structure in Fuel Cell Proton Exchange Membranes,” Dissertation, The faculty of Virginia Polytechnic Institute and State University, 2003.
[35] E. Barsoukov and J. R. Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applixations,” Wiley & Sons, 2005, pp. 170-171.
[36] H. Dohle, J. Divisek, J. Mergel, H. F. Otjen, C. Zingler, and D. Stolten, “Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell,” J. Power Sources, vol. 105, pp. 274-282, 2002.
[37] X. Ren, T. E. Springer, and S. Gottesfeld, “Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance,” J. Electrochem. Soc. vol. 147, pp. 92-98, 2000.
[38] A. Kuver and W. Vielstich, “Investigation of methanol crossover and single electrode performance during PEMDMFC operation A study using a solid polymer electrolyte membrane fuel cell system,” J. Power Sources, vol. 74, pp. 211-218, 1998.
[39] S. Mitsushima, N. Araki, N. Kamiya, and K. Ota, “Analysis of Oxygen Reduction on Pt Microelectrode with Polymer Electrolytes of Various Exchange Capacities,” J. Electrochem. Soc., vol. 149, pp. A1370-1375, 2002.
[40] T. E. Springer, M. S. Wilson, and S. Gottesfeld, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., vol. 140, pp. 3513-3526, 1993.
[41] S. Enback and G. Lindbergh, “Experimentally Validated Model for CO Oxidation on PtRu/C in a Porous PEFC Electrode,” J. Electrochem. Soc., vol. 152, pp. A23-31, 2005.
[42] P. Piela, T. E. Springer, J. Davey, and P. Zelenay, “Direct measurement of iR-free individual-electrode overpotentials in polymer electrolyte fuel cells,” J. Phys. Chem. C, vol. 111, pp. 6512-6523, 2007.
[43] Z. Liu, J. S. Wainright, W. Haung, and R. F. Sacinell, “Positioning the reference electrode in proton exchange membrane fuel cells: calculations of primary and secondary current distribution,” Electrochim. Acta, vol. 49, pp. 923-935, 2004.
[44] S. Eccarius, T. Manurung, and C. Ziegler, “On the reliability of measurements Including a reference electrode in DMFCs,” J. Electrochem. Soc., vol. 154, pp. B852-864, 2007.
[45] M. Seo, Y. Yun, J. Lee, and Y. Tak, “Electrochemical characteristics of chloride ion modified Pt cathode in direct methanol fuel cells,” J. Power Sources, vol. 159, pp. 59-62, 2006.
[46] S. Uhm, T. Noh, Y. D. Kim, and J. Lee, “Enhancement of methanol tolerance in DMFC cathode: Addition of chloride ions,” Chemphyschem, vol. 9, pp. 1425-1429, 2008.
[47] X. Zhao, G. Sun, L. Jiang, W. Chen, S. Tang, and Q. Xin, “Effects of Chloride Anion as a Potential Fuel Impurity on DMFC Performance,” Electrochem. Solid-state Lett., vol. 8, pp. A149-151, 2005.
[48] J. O. Schumacher, P. Gemmar, M. Denne, M. Zedda, and M. Stueber, “Control of miniature proton exchange membrane fuel cells based on fuzzy logic,” J. Power Sources, vol. 129, pp. 143-151, 2004.
[49] Y. Liu, X. Qiu, W. Zhu, and G. U, “Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode,” J. Power Sources, vol. 114, pp. 10-14, 2003.
[50] I. M. Hsing, X. Wang, and Y. J. Leng, “Electrochemical Impedance Studies of Methanol Electro-oxidation on Pt/C Thin Film Electrode,” J. Electrochem. Soc., vol. 149, pp. A615-A621, 2002.
[51] R. Pintelon and J. Schoukens, “System Identification: a Frequency Domain Approach,” IEEE Press, Piscataway, USA, 2001.
[52] J. Verbeeck, R. Pintelon, and P. Guillaume, “Parameter determination for modeling system transients - Part IV: rotating machines,” IEEE Trans. Energy Conver., vol. 14, pp. 310–314, 1999.
[53] J. Verbeeck, R. Pintelon, and P. Lataire, “Identification of synchronous machine parameters using a multipleinput multiple output approach,” IEEE Trans. Energy Conver., vol. 14, pp. 909–917, 1999.
[54] P. Zoltowski, “A new approach to the measurement modeling in electrochemical impedance spectroscopy,” J. Electroanal. Chem. vol. 375, pp. 45–57, 1994.
[55] P. Zoltowski, “The power of reparametrization of measurement models in electrochemical impedance spectroscopy,” J. Electroanal. Chem., vol. 424, pp. 173-178, 1997.
[56] P. Zoltowski, “Non-traditional Approach to Measurement Models for Analysis of Impedance Spectra,” Solid State Ionics, vol. 176, pp. 1979–1986, 2005.
[57] A. Sadkowski, “On specific properties of electrochemical immittance close to discontinuity point,” Electrochim. Acta, vol. 49, pp. 2653–2659, 2004.
[58] A. Sadkowski, “CNLS fits and Kramers-Kronig validation of resonant EIS data,” J. Electroanal. Chem., vol. 573, pp. 241–253, 2004.
[59] A. Sadkowski, “Unusual electrochemical immittance spectra with negative resistance and their validation by Kramers–Kronig transformation,” Solid State Ionics, vol. 176, pp. 1987–1996, 2005.
[60] L. Pauwels, W. Simons, A. Hubin, J. Schoukens, and R. Pintelon, “Key issues for reproducible impedance measurements and their well-founded error analysis in a silver electrodeposition system,” Electrochim. Acta, vol. 47, pp. 2135–2141, 2002.
[61] K. Zou, J. Hu, and X. Kong, “The structure optimized fuzzy clustering neural network model and its application,” International Journal of Innovative Computing, Information And Control, vol.4, no.7, pp.1627-1634, 2008.
[62] S. Onut and C. O. Saglam, “Modeling and optimization of generl cargo port operations through fuzzy minimal spanning tree and fuzzy dynamic programming approaches,” International Journal of Innovative Computing, Information And Control, vol.4, no.8, pp.1835-1851, 2008.
[63] W. H. Ho, “Optimal state-feedback control of time-varying TS-fussy- model-based systems by using an integrative computational approach,” International Journal of Innovative Computing, Information And Control, vol.3, no.4, pp.873-885, 2007.
[64] X. Hu, Y. Li, J. Guo, L. Sun, and A. Z. Zeng, “A simulation optimization algorithm with heuristic transformation and its application to vehicle routing problems,” International Journal of Innovative Computing, Information And Control, vol.4, no.5, pp.1169-1181, 2008.
[65] C. C. Chen and C. S. Lin, “A GA-based nearly optimal image authentication approach,” International Journal of Innovative Computing, Information And Control, vol.3, no.3, pp.631-640, 2007.
[66] M. Basin, J. Perez, and D. C. Alvarez, “Optimal filtering for linear systems over polynomial observations,” International Journal of Innovative Computing, Information And Control, vol.4, no.2, pp.313-320, 2008.
[67] K. Zou, J. Hu, and X. Kong, “The structure optimized fuzzy clustering neural network model and its application,” International Journal of Innovative Computing, Information And Control, vol.4, no.7, pp.1627-1634, 2008.
[68] S. Onut and C. O. Saglam, “Modeling and optimization of generl cargo port operations through fuzzy minimal spanning tree and fuzzy dynamic programming approaches,” International Journal of Innovative Computing, Information And Control, vol.4, no.8, pp.1835-1851, 2008.
[69] P. Zhong and L. Wang, “support vector regression with input data uncertainty,” International Journal of Innovative Computing, Information And Control, vol.4, no.9, pp.2325-2332, 2008.
[70] V. Dragan and T. Morozan, “The linear quadratic optimization problem for a calss of discrete-time stochastic linear systems,” International Journal of Innovative Computing, Information And Control, vol.4, no.9, pp.2127-2137, 2008.
[71] Z. Cui, X. Cai, and J. Zeng, “Chaotic performance-dependent particle swarm optimization,” International Journal of Innovative Computing, Information And Control, vol.5, no.4, pp.951-960, 2009.
[72] Y. Takeuchi, “Optimal transmission of a set of discrete-time gaussian signals through channels with feedback,” International Journal of Innovative Computing, Information And Control, vol.2, no.5, pp.927-942, 2006.
[73] M. Matsubara, Y. Usui, and S. Sugimoto, “Identification of continuous-time MIMO systems via sampled data,” International Journal of Innovative Computing, Information And Control, vol.2, no.5, pp.927-942, 2006.
[74] Y. Takeuchi and A. Hirata “A method of optimization of linear observations for the kalman filter based on a generalized water filling theorema,” International Journal of Innovative Computing, Information And Control, vol.5, no.1, pp.75-85, 2009.
[75] M. E. Orazem, “An integrated approach to electrochemical impedance spectroscopy,” J. electroanal. Chem., vol. 572, pp. 317-327, 2004.
[76] J. R. Macdonald and J. A. Garber, “Analysis of impedance and admittance data for solids and liquids,” J. Electrochem. Soc., vol. 124, pp. 1022-1030, 1977.
[77] J. R. Macodonald, J. Schoonman, and A. P. Lehnen, “The Applicability and Power of Complex Nonlinear Least Squares for the Analysis of Impedance and Admittance Data,” J. Electrochem. Soc., vol. 131, pp. 77-95, 1982.
[78] E. V. Gheem, R. Pintelon, J. Vereecken, J. Schoukens, A. Hubin, P. Verboven, and O. Blajiev, “Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour Part I: theory and validation,” Electrochim. Acta, vol. 49, pp. 4753–4762, 2004.
[79] X. Wu, W. Zhang, and H. Yu, “Assessing nonlinearity in impedance model: the model characteristics of an equivalent circuit with a CPE,” J. Electroanal. chem., vol. 398, pp. 1-4, 1995.
[80] D. Vladikova and Z. Stoynov, “Secondary differential impedance analysis – a tool for recognition of CPE behaviour,” J. Electroanal. chem., vol. 572, pp. 377-387, 2004.
[81] J. B. Jorcin, M. E. Orazem, N. Pebere, and B. Tribollet, “CPE analysis by local electrochemical impedance spectroscopy,” Electrochim. Acta, vol. 51, pp. 1473–1479, 2006.
[82] T. Kurz, A. Hakenjos, J. Krämea, M. Zedda, and C. Agert, “An impedance-based predictive control strategy for the state-of-health of PEM fuel cell stacks,” J. Power Sources, vol. 180, pp. 742–747, 2008.
[83] N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy and B. Ould-Bouamama, “Model based PEM fuel cell state-of-health monitoring via ac impedance measurements,” J. Power Sources, vol. 159, pp. 905–913, 2006.
[84] T. Springer, T. Zawodzinski, M. Wilson, and S. Gottesfeld, “Simulation of the Direct Methanol Fuel Cell. II. Modeling and Data Analysis of Transport and Kinetic Phenomena,” J. Electrochem. Soc., vol. 143, pp. 587-599, 1996.
[85] V. Paganin, C. Oliveira, E. Ticianelli, T. Springer, and E. Gonzales, “Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell,” Electrochim. Acta, vol. 43, pp. 3761-3766, 1998.
[86] T. S. Shih, J. S. Su, and J. S. Yao, “Fuzzy Linear Programming Based on Interval-valued Fuzzy Sets,” International Journal of Innovative Computing, Information and Control, vol.5, no.8, pp. 2081-2090, 2009.
[87] K. Kato and M, Sakawa, “An Interactive Fuzzy Satisficing Method Based on Simple Recourse Model for Multiobjective Linear Programming Problems Involving Random Variable Coefficients,” International Journal of Innovative Computing, Information and Control, vol.5, no.7, pp. 1997-2010, 2009.
[88] M. S. Ilic, “Fuzzy Regression Models on Entropy Based Blocking Structures,” International Journal of Innovative Computing, Information and Control, vol.5, no.6, pp. 1475-1483, 2009.
[89] K. Eguchi, S. Kurebayashi, H. Zhu, T. Inoue, and F. Ueno, “A Self-learning Support System for Pupils Based on a Fuzzy Scheme,” International Journal of Innovative Computing, Information and Control, vol.4, no.10, pp. 2441-2450, 2008.
[90] H. Han, “Fuzzy Controller Design with Input Saturation,” International Journal of Innovative Computing, Information and Control, vol.4, no.10, pp. 2507-2521, 2008.
[91] H. Y. Kao, C. H. Huang, T. C. Kao, and H. C. Kao, “Knowledge Modeling in Traditional Chinese Medicine with Fuzzy Influence Diagrams,” International Journal of Innovative Computing, Information and Control, vol.4, no.8, pp. 2057-2067, 2008.
[92] J. F. Chang, B. M. Hsu, M. H. Shu, and C. S. Yang “Fuzzy Inference for Assessing Process Lifetime Performance,” International Journal of Innovative Computing, Information and Control, vol.3, no.6, pp. 1729-1742, 2007.
[93] G. Zhi and S. Watanabe, “A Fuzzy Model for Bidding Behavior of Generators in Electricity Markets,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 953-966, 2007.
[94] W. G. Ma, “Design of Signal Fuzzy Controller of Single Intersection in Intelligence Transportation System,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 1023-1029, 2007.
[95] Y. Shi, P. Messenger, and M. Mizumoto, “Fuzzy Inference Modeling Based on Fuzzy Singleton-type Reasoning,” International Journal of Innovative Computing, Information and Control, vol.3, no.1, pp. 13-20, 2007.
|