參考文獻 |
[1] Q.-Y. Tong, U. Gosele, T. Martini and M. Reiche, “Ultrathin single-crystalline silicon on quartz (SOQ) by 150 °C wafer bonding”, Sensors and Actuators A 48, 117 (1995).
[2] T. Abe, K. Sunagawa, A. Uchiyama1, K. Yoshizawa1 and Y. Nakazato1, “Fabrication and bonding strength of bonded silicon-quartz wafers”, Jpn. J. Appl. Phys. 32, 334 (1993).
[3] K. R. Sarma and C. S. Chanley, U.S. Patent No. 5,258,323 (1993).
[4] M. S. Liu, K.-L. Lo, and K. R. Sarma, U.S. Patent No. 5,536,950 (1996).
[5] D. G. Hopper, “High resolution displays and roadmap”, Proc. 2000 ICAT, 215 (2000).
[6] T. Morita, "An overview of active matrix LCDs in business and technology", Proc. 2nd Int. Workshop AMLCDs, 1 (1995).
[7] F. Brunier, O. Rayssac, I. Cayrefourcq, H. Oka, T. Sato et al., “Silicon single crystal on quartz: fabrication and benefits”, Proc. 2003 IEEE Int. SOI Conf., 59 (2003).
[8] K. R. Sarma and S. T. Liu, “Silicon-on-quartz for low power electronic applications”, Proc. 1994 IEEE Int. SOI Conf., 117 (1994).
[9] C. Mazure, I. Cayrefourcq, B. Ghyselen, F. Letertre, and C. Maleville, “Moving from today's SOI to advanced substrate engineering”, Solid State Tech. 46, 111 (2003).
[10] K. Egami, M. Kimura, and T. Hamaguchi, “Laser recrystallization of silicon stripes in SiO2 grooves with a polycrystalline silicon sublayer”, Appl. Phys. Lett. 43, 1023 (1983).
[11] Q.-Y. Tong, G. Cha, R. Gafiteanu, and U.Gosele, “Low temperature wafer direct bonding”, J. Microelectromech. Syst. 3, 29 (1994).
[12] Q.-Y. Tong, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and U. Gosele, “ Low temperature Si layer splitting”, Proc. 1997 IEEE Int. SOI Conf., 126 (1997).
[13] Q.-Y. Tong, R. Scholz, U. Gosele, T.-H. Lee, L.-J. Huang et al., “A “smarter-cut” approach to low temperature silicon layer transfer”, Appl. Phys. Lett. 72, 49 (1998).
[14] K. Henttinen, T. Suni, A. Nurmela, H. V. A. Luoto, I. Suni, et al., “Transfer of thin Si layers by cold and thermal ion cutting”, J. Mat. Sci. Mat. in Electron. 14, 299 (2003).
[15] X. Shi, K. Henttinen, T. Suni, I. Suni, and M. Wong, “Characteristics of transistors fabricated on silicon-on-quartz prepared using a mechanically initiated exfoliation technique”, IEEE Elec. Dev. Lett. 26, 607 (2005).
[16] J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett. 48, 78 (1985).
[17] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator”, J. Appl. Phys. 64, 4943 (1988).
[18] M. Bruel, “Silicon on insulator material technology”, Electron. Lett. 31, 1201 (1995).
[19] Q.-Y. Tong and U. Gosele, “Semiconductor Wafer Bonding: Science and Technology”, John Wiley & Sons, (1999).
[20] M. Bruel, U.S. Patent No. 5,374,564 (1994).
[21] M. Bruel, B. Aspar and A. Auberton-Herve, "Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding", Jpn. J. Appl. Phys. 36, 1636 (1997).
[22] Q.-Y. Tong, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and U. Gosele, “Si and SiC layer transfer by high temperature hydrogen implantationand lower temperature layer splitting”, Electron. Lett. 34, 407 (1998).
[23] Q.-Y. Tong, K. Gutjahr, S. Hopfe, U. Gosele, and T.-H. Lee, “Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates”, Appl. Phys. Lett. 70, 1390 (1997).
[24] I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Gosele, “Low-temperature layer splitting of (100) GaAs by He+H co-implantation and direct wafer bonding”, Appl. Phys. Lett. 82, 2413 (2003).
[25] Q.-Y. Tong, Y.-L. Chao, L.-J. Huang, and U. Gosele, “Low temperature InP layer transfer”, Electron. Lett. 35, 341 (1999).
[26] A. J. Pitera, G. Taraschi, M. L. Lee, C. W. Leitz, Z.Y. Cheng, and E. A. Fitzgerald, “Coplanar integration of lattice-mismatched semiconductors with silicon by wafer bonding Ge / Si1–xGex / Si virtual substrates”, J. Electrochem. Soc. 151, G443 (2004).
[27] L.-J. Huang, J.-O. Chu, D. F. Canaperi, C. P. D’Emic, R. M. Anderson et al., “SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect”, Appl. Phys. Lett. 78, 1267 (2001)
[28] T. A. Langdo, M. T. Currie, A. Lochtefeld, R. Hammond, J. A. Carlin et al., “SiGe-free strained Si on insulator by wafer bonding and layer transfer”, Appl. Phys. Lett. 82, 4256 (2003).
[29] T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph. D. Dessertation (1998).
[30] A. Uhlir, “Electrolytic shaping of germanium and silicon”, Bell System Tech. J. 35, 333 (1956).
[31] T. Yonehara, K. Sakaguchi, and N. Sato, “Epitaxial layer transfer by bond and etch back of porous Si”, Appl. Phys. Lett. 65, 2108 (1994).
[32] N. Sato, T. Yonehara, and H. Kumomi, U.S. Patent No. 5,290,712 (1994)
[33] T. Yonehara and K. Sakaguchi, “ELTRANR; Novel SOI Wafer Technology”, JSAP Int. No.4, (2001).
[34] K. Sakaguchi and T. Yonehara, U.S. Patent No. 6,121,112 (2000).
[35] C.-T. Sah, J. Y.-C. Sun, and J. J.-T. Tzou, “Deactivation of the boron acceptor in silicon by hydrogen”, Appl. Phys. Lett. 43, 204 (1983).
[36] J. D. Bernstein, S. Qin, C. Chen, and T.-J. King, “Hydrogenation of polycrystalline silicon thin film transistors byplasma ion implantation”, IEEE Elec. Dev. Lett. 16, 421 (1995).
[37] C. M. Park, J. H. Jeon, J.-S. Yoo, and M. K. Han,” A novel multi-channel poly-Si TFT improving hydrogen passivation”, Mat. Res. Soc. Symp. Proc. 471, 167 (1997).
[38] A. Matsuda and K. Tanaka,” Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique”, J. Appl. Phys. 60, 2351 (1986).
[39] S. J. Pearton, J. W. Corbett, and M. Stavola, “Hydrogen in Crystalline Semiconductors”, Springer-Verlag, 202 (1991).
[40] V. Vieringen and N. Warmoltz, Physica 22, 849 (1956).
[41] B. L. Sopori, Y. Zhang, and N. M. Ravindra, “Silicon device processing in H ambients: H diffusion mechanisms and influence on electronic properties”, J. Electronic Mat. 30, 1616 (2001).
[42] B. L. Sopori, X. Deng, J. P. Benner, A. Rohatgi, P. Sana et al., “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms”, Sol. Energy Mat. & Solar Cells 41/42, 159 (1996).
[43] Y. Zhang, “Modeling Hydrogen Diffusion for Solar Cell Passivation and Process Optimization”, New Jersey Institute of Technology, Ph. D. Dissertation (2002).
[44] B. L. Sopori, Y. Zhang, R. Reedy, K. Jones, N. M. Ravindra et al., “Trapping and detrapping of H in Si: Impact on diffusion properties and solar cell processing”, Mat. Res. Soc. Symp. Proc. 719, F.5.3.2 (2002).
[45] K.-H. Hwang, J.-W. Park, E.-J. Yoon, K.-W. Whang and J.-Y. Lee, “Amorphous {100} platelet formation in (100) Si induced by hydrogen plasma treatment”, J. Appl. Phys. 81, 74 (1997).
[46] D. Mathiot, “Modeling of hydrogen diffusion in n- and p-type silicon”, Phys. Rev. B 40, 5867 (1989).
[47] J. P. Kalejs and S. Rajendran, “Model for diffusion and trapping of hydrogen in crystalline silicon”, Appl. Phys. Lett. 55, 2763 (1989).
[48] J. T. Borenstein, J. W. Corbett, and S. J. Pearton, ”Kinetic model for hydrogen reaction in boron-doped silicon”, J. Appl. Phys. 73, 2751 (1993).
[49] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou, and S. C.-S. Pan, ”Deactivation of Group III acceptors in silicon during keV electron irradiation”, Appl. Phys. Lett. 43, 962 (1983).
[50] J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser, and R. O. Wance, ” Neutralization of shallow acceptor levels in silicon by atomic hydrogen”, Phys. Rev. Lett. 51, 2224 (1983).
[51] J. I. Pankove, R. O. Wance, and J. E. Berkeyheiser, ” Neutralization of acceptors in Silicon by atomic hydrogen”, Appl. Phys. Lett. 45, 1100 (1984).
[52] A. J. Tavendale, D. Alexiev, and A. A. Williams, ” Field drift of the hydrogen-related, acceptor-neutralizing defect in diodes from hydrogenated silicon”, Appl. Phys. Lett. 47, 316 (1985).
[53] C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, ” Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. Lett. 60, 2761 (1988).
[54] S. T. Pantelides, ”Effect of hydrogen on shallow dopants in crystalline silicon”, Appl. Phys. Lett. 50, 995 (1987).
[55] J. I. Pankove, “Temperature dependence of boron neutralization in silicon by atomic hydrogen”, J. Appl. Phys. 68, 6532 (1990).
[56] A. D. Marwick, G. S. Oehrlein, and M. Wittmer, “High hydrogen concentrations produced by segregation into p+ layers in silicon”, Appl. Phys. Lett. 59, 198 (1991).
[57] C. P. Herrero and M. Stutzmann, “Microscopic structure of boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38, 12668 (1988).
[58] L. Korpas, J. W. Corbett, and S. K. Estreicher, “Multiple trapping of hydrogen at boron and phosphorus in silicon”, Phys. Rev. B 46, 12365 (1992).
[59] J. C. Noya, C. P. Herrero, and R. Ramirez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B 56, 15139 (1997).
[60] N. M. Johnson, “Mechanism for hydrogen compensation of shallow-acceptor impurities in single-crystal silicon”, Phys. Rev. B 31, 5525 (1985).
[61] B. L. Sopori, Y. Zhang, and R. Reedy, “H diffusion for impurity and defect passivation: A physical model for solar cell processing”, Proc. 29th IEEE PVSC, 222 (2002).
[62] Y.-H. Xie, H. S. Luftman, J. Lopata, and J. C. Bean, “Hydrogenation of molecular beam epitaxial Ge0.36Si0.64 on Si”, Appl. Phys. Lett. 55, 684 (1989).
[63] T. Hochbauer, A. Misra, M. Nastasi, and J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon”, J. Appl. Phys. 92, 2335 (2002).
[64] N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, ”Defects in single-crystal silicon induced by hydrogenation”, Phy. Rev. B 35, 4166 (1987).
[65] Y.-S. Kim and K. J. Chang, ”Structural Transformation in the Formation of H-Induced (111) Platelets in Si”, Phys. Rev. Lett. 86, 1773 (2001).
[66] N. H. Nickel, G. B. Anderson, N. M. Johnson, and J.Walker, ”Nucleation of hydrogen-induced platelets in silicon”, Phys. Rev. B 62, 8012 (2000).
[67] H. J. Stein, S. M. Myers, and D. M. Follstaedt, “Infrared spectroscopy of chemically bonded hydrogen at voids and defects in silicon”, J. Appl. Phys. 73, 2755 (1993).
[68] L.-J. Huang, Q. Y. Tong, Y.-L. Chao, T.-H. Lee, T. Martini et al., “Onset of blistering in hydrogen-implanted silicon”, Appl. Phys. Lett., 74, 982 (1999).
[69] T. Hochbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Philipps-University of Marburg, Ph. D. Dissertation (2001).
[70] M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham et al., “On the mechanism of the hydrogen-induced exfoliation of silicon”, J. Vac. Sci. Technol. B 15, 1065 (1997).
[71] J. Grisolia, G. B. Assayag, A. Claverie, B. Aspar, C. Lagahe et al., “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si”, Appl. Phys. Lett. 76, 852 (2000).
[72] B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie et al.,” The generic nature of the Smart-CutR process for thin film transfer”, J. Electronic Mat. 30, 834 (2001).
[73] M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology”, Nucl. Instr. and Methods B 108, 313 (1996).
[74] K. Mitani and U. Gosele, “Formation of interface bubbles in bonded silicon wafers: A thermodynamic model”, Appl. Phys. A 54, 543 (1992).
[75] L. B. Freund, ”A lower bound on implant density to induce wafer splitting in forming compliant substrate structures”, Appl. Phys. Lett. 70, 3519 (1997).
[76] L.-J. Huang, “Layer Transfer of Semiconductor and Insulator Materials by Wafer Bonding and Hydrogen Implantation”, Duke University, Ph. D. Dissertation (1999).
[77] A. Y. Usenko and A. G. Ulyashin, “Thinner silicon on insulator using plasma hydrogenation”, Jpn. J. Appl. Phys. 41, 5021 (2002).
[78] A. Y. Usenko, W. N. Carr, and B. Chen, “Transfer of single crystalline silicon nanolayer onto alien substrate”, IEEE Trans. Nanotechnol. 3, 225 (2004).
[79] P. Chen, P. K. Chu, T. Hochbauer, J.-K. Lee, M. Nastasi et al. ,“Investigation of plasma hydrogenation and trapping mechanism for layer transfer”, Appl. Phys. Lett. 86, 031904 (2005)
[80] P. Chen, S. S. Lau, P. K. Chu, K. Henttinen, T. Suni et al., “Silicon layer transfer using plasma hydrogenation”, Appl. Phys. Lett. 87, 111910 (2005).
[81] L. Shao, Y. Lin, J.-K. Lee, Q.-X. Jia, Y.-Q. Wang et al., “Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation”, Appl. Phys. Lett. 87, 091902 (2005).
[82] L. Shao, Y. Lin, J. G. Swadener, J.-K. Lee, Q.-X. Jia et al., “Strain-facilitated process for the lift-off of a Si layer of less than 20 nm thickness”, Appl. Phys. Lett. 87, 251907 (2005).
[83] L. Shao, Y. Lin, J. G. Swadener, J.-K. Lee, Q.-X. Jia et al., “H-induced platelet and crack formation in hydrogenated epitaxial Si/Si0.98B0.02/Si structures”, Appl. Phys. Lett. 88, 021901 (2006).
[84] T.-H. Lee, WIPO Patent No. WO/2003/103026 (2003).
[85] B. Chen, “Mechanisms of Layer-transfer Related to Silicon-on-insulator Structures”, New Jersey Institute of Technology, Ph. D. Dissertation (2004).
[86] J. C. Vickerman, A. Brown, and N. M. Reed, “Secondary Ion Mass Spectrometry: Principles and Applications”, Oxford University Press, New York, (1989).
[87] A. J. Pitera and E. A. Fitzgerald, “Hydrogen gettering and strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge for layer exfoliation applications”, J. Appl. Phys. 97, 104511 (2005).
[88] R. Hull, J. Gray, C. C. Wu, S. Atha, and J. A. Floro, “Interaction between surface morphology and misfit dislocations as strain relaxation modes in lattice-mismatched heteroepitaxy”, J. Phys.: Condens. Matter 14, 12829 (2002).
[89] M. Ohring, “Materials science of thin films: deposition and structure”, Academic Press, San Diego, CA, 436 (2002).
[90] R. M. Wallace, P. J. Chen, L. B. Archer, and J. M. Anthony, “Deuterium sintering of silicon-on-insulator structures: D diffusion and replacement reactions at the SiO2/Si interface”, J. Vac. Sci. Technol. B 17(5), 2153 (1999).
[91] L. Shao, J. K. Lee, Y. Q. Wang, M. Nastasi, P. E. Thompson et al., “Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy”, J. Appl. Phys. 99, 126105 (2006).
[92] L. Shao, X. Wang, I. Rusakova, H. Chen, J. Liu et al., “Study on interfacial dislocations of Si substrate/epitaxial layer by self-interstitial decoration technique”, Appl. Phys. Lett. 83, 934 (2003).
[93] H.-W. Kim and R. Reif, "Ex situ wafer surface cleaning by HF dipping for low temperature silicon epitaxy", Thin Solid Films 305, 280 (1997).
[94] H.-W. Kim, Z.-H. Zhou, and R. Reif, "Room temperature wafer surface cleaning by in-situ ECR (electron cyclotron resonance) hydrogen plasma for silicon homoepitaxial growth", Thin Solid Films 302(1-2), 169 (1997).
[95] D. M. Isaacson, A. J. Pitera, and E. A. Fitzgerald, “Relaxed graded SiGe donor substrates incorporating hydrogen-gettering and buried etch stop layers for strained silicon layer transfer applications”, J. Appl. Phys. 101, 013522 (2007).
[96] X. Hong, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 147 (2001).
[97] H. Bracht, “Diffusion mechanisms and intrinsic point-defect properties in silicon”, MRS Bull. 25, 22 (2000).
[98] L. D. Lanzerotti, J. C. Sturm, E. Stach, R. Hull, T. Buyuklimanli, and C. Magee, "Suppression of boron transient enhanced diffusion in SiGe heterojunction bipolar transistors by carbon incorporation", Appl. Phys. Lett. 70, 3125 (1997).
[99] P. J. H. Denteneer, C. G. Va der Walle, and S. T. Pantelides, “Microscopic structure of the hydrogen-boron complex in crystalline silicon”, Phys. Rev. B 39, 10809 (1989).
[100] T. Hochbauer, A. Misra, M. Nastasi, and J. W. Mayer, "Investigation of the cut location in hydrogen implantation induced silicon surface layer exfoliation", J. Appl. Phys. 89, 5980 (2001).
[101] C. Malleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Biuel et al., “Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology”, Mater. Sci. Eng. B 16, 14 (1997).
[102] K. Henttinen, I. Suni, and S. S. Lau, “Mechanically induced Si layer transfer in hydrogen- implanted Si wafers”, Appl. Phys. Lett. 76, 2370 (2000). |