以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:70 、訪客IP:18.118.162.180
姓名 許笙載(Sheng-Tsai Hsu) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 運用電泳沉積法於不鏽鋼鏡面拋光之研究
(A study on stainless steel mirror surface polishing by using the electrophoretic deposition method)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究係利用電泳沉積法(Electrophoretic Deposition Method, EPD Method)來實現表面鏡面拋光,藉由電泳沉積特性,拋光磨輪會不斷地再生,工件表面因此可得到相當良好的拋光結果,並可應用於改善傳統拋光製程之耗費人力、拋光效率低落及表面品質不佳等問題。本研究之EPD拋光實驗單因子參數包括有拋光時間、磨輪施加於工件表面之軸向荷重、磨輪轉速、拋光進給速率及工作電壓等,並運用電泳沉積現象和機械拋光之特性,針對不鏽鋼材質之車削面及放電面二種工件,進行表面拋光加工實驗,對其作表面粗糙度量測與表面形貌觀察,並對實驗結果進行分析與探討。
由實驗結果得知,使用SiC粒徑顆粒大小為0.9~1.5μm,進行車削面試片EPD拋光加工實驗後,可將原始表面粗糙度值為Ra 0.5 μm(Rmax 3.7 μm)的車削面,下降至表面粗糙度值為Ra 0.03 μm (Rmax 0.29 μm)的鏡面,且粗糙度改善率可達Ra 94 %及Rmax 92.2 %;另在放電面試片EPD拋光實驗後,則可將原始表面粗糙度值為Ra 1.67 μm(Rmax 10.11 μm),下降至表面粗糙度值為Ra 0.05 μm(Rmax 0.34 μm)的鏡面,且粗糙度改善率可達Ra 97 %及Rmax 96.6 %。摘要(英) In this study, a mirror-like surface polishing is accomplished by electrophoretic deposition (EPD) method. When abrasive grains are ablated from polishing wheels, the abrasive grains in the electrolyte are moved again into the micro holes of the non-woven fabric to regenerate the polishing wheels by using the characteristics of EPD. The polishing wheel can be continuously refreshed and improves the surface roughness of the specimen markedly in a short period. The control parameters of the EPD polishing process include the polishing time, the axial loading, the rate of rotation of the polishing wheel, the polishing feed rate and the working voltage, etc. After polishing the turning machined surface and electro-discharge machined surface of stainless steel specimen, the surface of specimen were measured and observed. Moreover, the experimental results were also analyzed and discussed .
SiC particles of size 0.9–1.5μm were used in this study. After turning machined surface polishing, the initial roughness of surface could be improved from 0.5 μm Ra (3.7 μm Rmax )to 0.03 μm Ra(0.29 μm Rmax ). The roughness improvement rate could be reached Ra 94 % and Rmax 92.2 %. After electro-discharge machined surface polishing, the initial roughness of surface could be improved from 1.67μm Ra(10.11 μm Rmax ) to 0.05μm Ra (0.34 μm Rmax ). The roughness improvement rate could be reached Ra 97 % and Rmax 96.6 %.關鍵字(中) ★ 表面粗糙度
★ 不鏽鋼
★ 拋光磨輪
★ 鏡面拋光
★ 電泳沉積關鍵字(英) ★ mirror surface polishing
★ polishing wheel
★ electrophoretic deposition
★ surface roughness
★ stainless steel論文目次 中文摘要 i
英文摘要 ii
謝 誌 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 ix
第一章 緒論 1
.1-1 前言 1
.1-2 研究動機與目的 1
.1-3 文獻回顧 3
.1-4 研究方法 4
第二章 實驗基礎原理 6
2-1 放電加工基本原理 6
2-2 放電加工材料去除機制 7
2-3 電泳沉積加工之原理 9
2-3-1 電泳簡史與發展 9
2-3-2 電雙層(The Electric Double Layer)理論 9
2-3-3 電動力學現象(Electrokinetic Phenomena) 10
2-3-4 粉體粒子表面電荷來源 13
2-3-5 電泳懸浮液內粉體粒子間分散行為之機制 14
2-3-6 電泳沈積法之原理 16
2-3-7 電泳沈積之方式與沈積速率 16
第三章 實驗設備、材料與方法 19
3-1 實驗相關設備 19
3-2 實驗材料 24
3-3 實驗設定與方法 29
第四章 實驗結果與討論 38
4-1 電泳沉積法應用於車削面拋光之參數影響探討 38
4-1-1 拋光時間對表面粗糙度的影響 38
4-1-2 軸向荷重對表面粗糙度的影響 41
4-1-3 磨輪轉速對表面粗糙度的影響 44
4-1-4 拋光進給速率對表面粗糙度的影響 47
4-1-5 工作電壓對表面粗糙度的影響 50
4-1-6 車削面試片拋光後之表面形貌觀察 53
4-2 電泳沉積法應用於放電面拋光之參數影響探討 55
4-2-1 拋光時間對表面粗糙度的影響 55
4-2-2 軸向荷重對表面粗糙度的影響 58
4-2-3 磨輪轉速對表面粗糙度的影響 61
4-2-4 拋光進給速率對表面粗糙度的影響 64
4-2-5 工作電壓對表面粗糙度的影響 67
4-2-6 放電面試片拋光後之表面形貌觀察 70
4-3 電泳沉積機制之有無對表面拋光影響比較 72
第五章 結論 75
參考文獻 76
個人簡歷 78參考文獻 1. 間宮富士雄、山口裕、渡邊與七,「化學研磨と電解研磨」,楨書店,
p.113,2004。
2. Sayaka Yanagida, Akira Nakajima, Yoshikazu Kameshima, Naoya Yoshida,
Toshiya Watanabe, Kiyoshi Okada, “Preparation of a crack-free rough
titania coating on stainless steel mesh by electrophoretic deposition”,
Materials Research Bulletin, Vol.40, pp.1335–1344, 2005.
3. S. Y. Ng, A. R. Boccaccini, “Lead zirconate titanate films on metallic
substrates by electrophoretic deposition”, Materials Science and
Engineering, Vol.116, pp.208–214, 2005.
4. A. Pfrengle, H. von Both, R. Knitter, J. Haußelt, “Electrophoretic deposition
and sintering of zirconia layers on microstructured steel substrates”, Journal
of the European Ceramic Society, Vol.26, pp.2633–2638, 2006.
5. Won Mook Choi1 and O Ok Park, “The fabrication of micropatterns of a 2D
colloidal assembly by electrophoretic deposition”, Nanotechnology, Vol.17,
pp.325–329, 2006.
6. C. Kaya, F. Kaya, B. Su, B. Thomas, A. R. Boccaccini, “Structural and
functional thick ceramic coatings by electrophoretic deposition”, Surface &
Coatings Technology, Vol.191, pp.303– 310, 2005.
7. K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for
3-dimensional micro structures”, Proceeding IEEE MEMS, pp.73-78, 1996.
8. Y. Tani, T. Saeki , Y. Samitsu , K. Kobayashi , Y. Sato , “Infeed grinding of
silicon wafers applying electrophoretic deposition of ultrafine abrasives”,
Annals of the CIRP, Vol.47, pp.245-248, 1998.
9. Z. Haga and T. Semba, “Electrophoretic polishing of zirconia ceramics
using a porous anodic film as a binder of ultrafine silica abrasives”, JSME
International Journal Series C, Vol.41, pp.922-928, 1998.
10. Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki and O. Horiuchi, “A study on constant-pressure grinding with EPD pellets”, Key Engineering
Materials, Vols. 257-258, pp.135-140, 2004.
11. T. Oshita, Y. Sawaki, M. Kishimoto, “Grinding performance of pellet
prepared using nanosize ceria particles”, Journal of Alloys and Compounds,
Vols.408-412, pp.1118-1122, 2006.
12. Omer O. Van der Biest, Luc J. Vandeperre, “Electrophoretic deposition of
materials”, Annual Review of Materials Science, Vol. 29, pp.327-352, 1999.
13. K. Simovic, V. B. Miskovic-Stankovic, D. Kicevic, P. Jovanic,
“Electrophoretic deposition of thin alumina films from water suspension”,
Colloids and Surfaces (A), Vol.209, pp.47-55, 2002.
14. 董光雄,「放電加工」,復文書局,p.26~29,1994。
15. 官君宇,“磨料噴射技術應用於精微拋光之研究”,中央大學機械工程研
究所碩士論文,2006。
16. 張有義、郭蘭生,「膠體及界面化學入門」,立圖書有限公司出版,
pp.191-230,1997。
17. 陳正德,“碳化矽的電泳沈積現象探討”,中央大學機械工程研究所碩士
論文,2002。
18. 陳宗淇、戴閩光,「膠體化學」,高等教育出版社,pp. 234-237,1984。指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2007-7-5 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare