博碩士論文 943203045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:225 、訪客IP:3.133.108.48
姓名 黃柏升(Po-Sheng Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電解水產氫效率之參數分析
(Study on efficiency of water electrolysis)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫氣在釋放能量的過程中,沒有二氧化碳等溫室氣體的產出,相當具有發展潛力,而電解水產氫(water electrolysis)是目前產生氫氣常用的方法,擁有高效能、產生氫氣純度高、使用便利等特色。
本文利用白金電極並以玻璃U型管為電解槽,強鹼性KOH為電解質溶液,固定輸入電量進行電解水實驗的參數探討,各種工作參數如電解質濃度、電流密度、溫度對所需電壓之影響,找出較佳電解值濃度,以改善電解水產氫的效率。
實驗結果顯示提昇溫度對電解效率的影響很大,溫度由27℃至75℃,每提昇25℃電解效率就增加5~6%。實驗前預估白金電催化效果與電解液離子傳輸現象隨著溫度而有所不同,較佳濃度會隨著不同溫度而有所改變,實驗結果並未顯示出明顯的差異,較佳電解質濃度不隨著溫度而改變,較佳KOH濃度仍為30%。
摘要(英) During the process of releasing energy, hydrogen produce no green-house-effect gas and has a potential as a energy carrier in the future. Among the methods of hydrogen production, water electrolysis has many advantages, such as high efficiency, high purity in producing hydrogen, easy in use, etc., and thus become one of popular methods.
In this study, we use platinum electrodes and modified experimental set-up to study the effects of working parameters, such as concentration of electrolyte, current, voltage, and the time on the efficiency of electrolysis. Based on the data recorded by AUTOLAB power supply and the energy consumed through electrolysis, we can find out the optimum parameters for water electrolysis to improve the hydrogen production efficiency of water electrolysis.
The results of experiment show that temperature greatly affects the electrolysis efficiency. Each increase of 25℃ gives electrolysis efficiency raising about 5% to 6% from 27℃ to 75℃. Before experiment, I predict that electrocatalytic of Pt and ion transfer of electrolyte would differ from temperature. It’s also found that the relation between temperatures with better concentrations for better electrolysis efficiency is so week and in most conditions the better concentration of KOH is 30%.
關鍵字(中) ★ 電解水
★ 產氫
★ 定電流密度
關鍵字(英) ★ constant current density
★ hydrogen production
★ water electrolysis
論文目次 摘要 I
Abstract II
目錄III
表目錄 VII
圖目錄VIII
符號說明X
第一章 緒論1
1-1 前言1
1-2 電解水產氫介紹3
1-3 電解水產氫實驗文獻回顧4
1-4 電解水產氫數值模擬文獻回顧6
1-5 研究動機與目的7
第二章 理論基礎9
2-1 電解水反應9
2-2 法拉第電解定律10
2-3 過電位11
2-3-1 活化過電位11
2-3-2 濃度過電位12
2-3-3 歐姆過電位13
2-4 塔弗方程式14
2-5 溫度影響反應速率14
2-6 自由能15
2-7 效率計算16
2-7-1 法拉第效率F ε 17
2-7-2 電解效率ε 18
2-7-3 熱力學效率T ε 18
2-7-4 能量效率E ε 19
2-8 線性掃描伏安法20
第三章 實驗裝置與步驟21
3-1 實驗簡述21
3-2 實驗裝置與材料21
3-2-1 白金電極21
3-2-2 電解U 型管22
3-2-3 KOH 氫氧化鉀23
3-3 實驗儀器23
3-3-1 導電度量測器23
3-3-2 恆電位儀23
3-3-3 恆溫加熱器24
3-3-4 磁石攪拌平台25
3-4 實驗步驟25
3-5 實驗注意事項26
第四章 結果與討論27
4-1 定電流實驗27
4-2 固定電量實驗優缺點討論28
4-3 溫度27oC,比較電流密度29
4-4 溫度27oC,比較電解質濃度31
4-5 增加溫度對電解效率的效益32
4-6 文獻比較33
第五章 結論與建議35
5-1 結論35
5-2 未來研究方向與建議37
參考文獻38
附錄41
I 焓電壓理論預測41
II 凡得瓦狀態方程式42
表43
圖47
參考文獻 1. S. Dunn, “Hydrogen futures: toward a sustainable energy system”, Hydrogen Energy, Vol.27, pp.235-264 (2002)
2. RA Hefner, Presentation at the 10th Repsol-Harvard Seminar on Energy Policy, in Madrid, Spain (1999)
3. Carl-Jochen Winter, “On energies of change — the hydrogen solution”, Gerling Akademie Verlag, pp. 67-82 (2000)
4. R. Mosdale and S. Srinivasan,” Analysis of performance and of water and thermal management in proton exchange membrane fuel cells”, Electrochimica Acta, Vol.40, pp.413-421 (1995)
5. C.J. Winter, and J. Nitsch, “Hydrogen as an Energy Carrier”, Spinger, (1988)
6. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka,” Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol.28, pp.35-41 (2003)
7. D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving”, Journal of Power Sources, Vol.118, pp.315-319 (2003)
8. M.P. Marčeta, D.Lj. Stojić, D.P. Šaponjić, N.I. Potkonjak, and Š.S. Miljanić, ” Comparison of different electrode materials–Energy requirements in the electrolytic hydrogen evolution process”, Journal of Power Sources, Vol.157, pp.758-764 (2006)
9. R.F. de Souza, J.C. Padilha, R.S. Gonçalves, and J. Rault-Berthelot,” Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis”, Electrochemistry Communications, Vol.8, pp.211-216 (2006)
10. R.F. de Souza, J.C. Padilha, R.S. Gonçalves, M.O. de Souza, and J. Rault-Berthelot” Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device”, Journal of Power Sources, Vol.164, pp.792-798 (2007)
11. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol.26, pp.653-659 (2001)
12. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol.30, pp.459-470 (2005)
13. R.L. LeRoy, M.B.I. Janjua, R. Renaud, and U. Leuenberger, “Analysis of Time-Variation Effects in Water Electrolyzers”, J. Electrochem. Soc., pp.1674-1682 (1979)
14. R.L. LeRoy, and C.T. Bowen, ”The Thermodynamics of Aqueous Water Electrolysis”, J. Electrochem., pp.1954-1962 (1980)
15. K. Onda, T. Kyakuno, K. Hattori, and K. Ito, “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis”, Journal of Power Sources, Vol.132, pp.64-70 (2004)
16.章宗穰,“諾貝爾獎百年鑑 運動中的分子 熱力學與反應動力學”, 世茂出版社, pp.45, 66-67, 91(2004)
17. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York, 1993
18. D.R. Crow, Principles and Applications of Electrochemistry, 4th ed., pp.174-176, Blackie, New York (1994)
19. A. Roy, S. Watson, and D. Infield,” Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers”, International Journal of Hydrogen Energy, Vol.31, pp.1964-1979 (2006)
20. D.C. Giancoli , Physics for scientists and engineers with modern physics, second ed., Prentice-Hall, Englewood Cliffs, N.J, P.437-439
21. D.R. Lide, Editor-in-chief, CRC Handbook of chemistry and physics, 86th ed., pp.6-33, CRC press, Boca Raton, Fla., 2005
22. R.C. Reid, J.M. Prausnitz, and E.E. Poling, The Propertities of Gases and Liquids, Fourth Edition, McGraw-Hill, New York, 1987
23. M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, p.457, 1986
24. J. Larminie, and A. Dicks, Fuel cell systems explained, John Wiley, Chichester, West Sussex, 2003
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2008-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明