以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:78 、訪客IP:3.144.90.160
姓名 蕭榮恩(Jung-En Hsiao) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 超音波噴墨器之分析與製作
(Analysis and Fabrication of Ultrasonic Inkjet Ejector)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 不同於熱汽泡式以及壓電致動式的噴墨法,聲波噴墨為一新潁的噴墨列印技術。本研究於不同的超音波噴墨相關理論做分析探討,如壓電薄膜共振頻率理論、焦平面偏移理論以及最佳聲阻抗匹配層之分析。另外本研究建構一套設計介面來整合上述之分析結果以及透鏡尺寸之輸出。此外,本研究為了驗證超音波噴墨之可行性而設計出大型化之噴墨頭,參考設計頻率為1 MHz。於大型化的實驗結果中可以成功地在墨水表面清楚地觀察到聲波聚焦的現象。再者,為了符合在實務上之應用,本研究利用微機電製程之設備來製作頻率為100 MHz和200 MHz的微小化超音波噴墨頭。我們成功的製作出四階之100 MHz與200 MHz之聚焦透鏡。另外在氧化鋅壓電薄膜鍍製方面,目前已成功濺鍍出具有(002)之C軸方向的氧化鋅薄膜。本篇論文已初步驗證微小化超音波噴墨頭之製作並且累積實驗室在微機電製程上之經驗。並且能夠利用設計介面快速完成噴頭模型之尺寸建立並且能有效的利用實驗參數來製作超音波噴墨器。 摘要(英) Different to the thermal-bubble and piezoelectric actuation methods, acoustic inkjet printing is a novel technique used for drop-on-demand printing technology. This thesis analyzes several basic theories about ultrasonic inkjet ejector, for instance, resonance theory of piezoelectric film, focal plane floating over the resonant frequency, and optimum selection for the sound impedance matching layer. And we establish a design interface to integrate these analyses for more convenient to construct the ultrasonic ejector model. Besides, this thesis also demonstrates the practicability of ultrasonic ejection through large-scale model which is designed at 1 MHz resonant frequency. In this experiment we can obviously observe the sound focusing phenomenon in the liquid surface. Furthermore, we fabricate the micro-scale binary Fresnel lens with operating frequency at 100 MHz and 200 MHz in order to meet the practical applications. The micro-scale ultrasonic ejector can be done through MEMS apparatuses such as spin coater, mask aligner, ICP and RF sputter. We succeed fabricating the 4-steps lenses at 100 MHz and 200 MHz. And the ZnO film is successfully sputtered and possesses strong (002) orientation so that the ultrasonic waves can be generated. This thesis preliminarily testifies the practicability of micro-scale ultrasonic ejector, and accumulates the lab experience of fabrication in MEMS technology. Through this study we can quickly construct the ejector model by design interface, and effectively fabricate the micro-scale ejector referring to the experimental parameters. 關鍵字(中) ★ 超音波噴墨
★ 聚焦透鏡
★ 氧化鋅薄膜關鍵字(英) ★ ultrasonic ejector
★ acoustic lens
★ ZnO piezoelectric film論文目次 CHAPTER 1 INTRODUCTION1
1.1 Background1
1.2 Literature Review3
1.3 Motivation and Framework5
CHAPTER 2 FUNDAMENTAL THEORIES OF ULTRASONIC INKJET EJECTOR7
2.1 Sound and Ultrasound7
2.1.1 Sound Excitation and Propagation8
2.1.2 Physical Properties of Ultrasound8
2.2 Piezoelectric Transducer 16
2.2.1 Piezoelectric Effect 17
2.2.2 Piezoelectric Constitutive Equations and Constants19
2.2.3 Hexagonal Symmetry (6mm) Constant 21
2.2.4 The Analysis of Piezoelectric Resonant Frequency with Mason’ Model22
2.3 Ultrasonic focusing lens27
2.3.1 Mechanisms of Focusing Energy in different type lenses 27
2.3.2 Parameters of Binary Fresnel Lens Dimension 34
CHPTER 3 ANALYSIS OF THE LARGE-SCALE ULTRASONIC EJECTOR37
3.1 Systematic Analysis of Ultrasonic Ejector37
3.1.1 Resonant Frequency of Piezoelectric Film 37
3.1.2 Transmission Efficiency of Sound Energy39
3.1.3 Focal Plane Floating in Resonant Frequency Sleva and Hunt, 1990] 42
3.2 Large-Scale Ultrasonic Ejector 47
3.2.2 Design of Large-Scale Ejector 50
3.2.3 Fabrication of Large-Scale Ejector 54
3.2.4 Ejecting Experiment in Large-Scale Ejector58
CHAPTER 4 FABRICATION OF MICRO-SCALE ULTRASONIC EJECTOR64
4.1 Preparation of Micro-Scale Ejector Fabrication 64
4.1.1 Parameters of the Three Micro-Scale Ejector65
4.1.2 Process of Fabrication in MEMS71
4.2 Fabrication Methods of Ultrasonic Ejector72
4.2.1 Apparatus of Fabrications 73
4.2.2 Fabrication of Lens 76
4.2.3 Fabrication of Transducer 78
4.2.4 Fabrication of Ink Vessel 78
4.3 Result of Micro-Scale Ultrasonic Ejector Fabrication81
4.3.1 Focusing Lens 81
4.3.2 Transducer82
CHAPTER 5 CONCLUSION 87
REFERENCE88參考文獻 J. Aizawa, H. Fukumoto, and M. Takeda, 2003, “Liquid Ejector,” Patent No. 6598958B2 of US Patent.
J. Aizawa, H. Fukumoto, and M. Takeda, 2004, “Droplet Ejector and Liquid Supply Tube,” Patent No. 6692106B2 of US Patent.
J. Brünahl, 2003, Physics of Piezoelectric Shear Mode Inkjet Actuators, Universitetsservice US-AB, Stockholm, ISBN 9162856758.
K. Cheng, T. Y. Yang, V. Wang, C. C. Lai, K. H. Wu, and J. Chen, 2001, “A Novel Application of Ink-Jet Printing Technology on Manufacturing Color Filter for Liquid Crystal Display,” NIP17 Conference Proceedings Florida, IS&T, pp. 739-743.
B. T. Chu and R. E. Apfel, 1982, “Acoustic Radiation Pressure Produced by a Beam of Sound,” Journal of the Acoustical Society of America, Vol. 72, No.6, pp. 1673-1687.
Ph. Defranould, 1981, “High Deposition Rate Sputtered ZnO Fin Films for BAW and SAW Applications,” Proceedings of 1981 IEEE Ultrasonics Symposium, pp. 483-488.
S. A. Elrod, B. Hadimioglu, B. T. Khuri-Yakub, E. G. Rawson, E. Richley and C. F. Quate, 1989, “Nozzleless Droplet Formation with Focused Acoustic Beams,” Journal of Applied Physics, Vol. 65, No. 9, pp. 3441-3447.
H. Fukumoto, J. Aizawa, H. Matsuo, H. Narumiya and K. Nakagawa, 20001, “Liquid Ejector Which Uses a High-Order Ultrasonic Waves to Eject Ink Droplets and Printing Apparatus Using Same,” Patent No. 6155671 of US Patent.
H. Fukumoto, J. Aizawa, H. Nakagawa and H. Narumiya, 20002, “Printing with Ink Mist Ejected by Ultrasonic Waves,” Journal of Imaging Science and Technology, Vol. 44, No. 5, pp. 398-405.
H. Fukumoto, J. Aizawa and H. Narumiya, 20003, “Acoustic Liquid Ejector and Printer Apparatus Incorporating the Ejector,” Patent No. 6154235 of US Patent.
B. Hadimioglu, S. A. Elrod, D. L. Steinmetz, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, E. G. Rawson, and C. F. Quate, 1992, “Acoustic Ink Printing,” Proceedings of 1992 Ultrasonics Symposium, pp. 929-935
B. Hadimioglu, E. G. Rawson, R. Lujan, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, and C. F. Quate, 1993, “High-Efficiency Fresnel Acoustic Lenses,” Proceedings of 1993 Ultrasonics Symposium, pp. 579-582.
D. Huang and E. S. Kim, 2001, “Micromachined Acoustic-Wave Liquid Ejector,” Journal of Microelectromechanical Systems, Vol. 10, No. 3, pp. 442-449.
S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, “Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Waves and Nozzle,” Proceedings of 1999 IEEE Ultrasonics Symposium, pp. 695-698.
G. S. Kino, 1987, Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Prentice-Hall, ISBN 0130030473
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000, Fundamentals of Acousitcs, John Wiley & Sons, Inc., United States of America, ISBN 047184789
J. W. Kwon, Q. Zou and E. S. Kim, 2002, “Directional Ejection of Liquid Droplets Through Sectoring Half-Wave-Band Sources of Self-Focusing Acoustic Transducer,” Proceedings of IEEE International Micro Electro Mechanical Systems Conference, pp. 121-124.
P. M. Martin, M. S. Good, J. W. Johnston, G. J. Posakony, L. J. Bond and S. L. Crawford, 2000, “Piezoelectric films for 100-MHz ultrasonic transducers,” Thin Solid Films, Vol. 379, pp. 253-258.
C. F. Quate, E. G. Rawson, and B. Hadimioglu, 1991, “Muti-Discrete-Phase Fresnel Acoustic Lenses and Their Application to Acoustic Ink Printing,” Patent No. 5041849 of US Patent.
M. Z. Sleva and W. D. Hint, 1990, “Design and construction of a PVDF Fresnel lens,” Proceedings of 1990 IEEE Ultrasonics Symposium, Vol. 2, pp. 821-826.
K. W. Tay, 2005, “The Analysis and Design of Film Bulk Acoustic-Wave Resonators,” Master Thesis of National Cheng Kung University, Taiwan, Republic of China.
R. W. Wood and A. L. Loomis, 1927, “The physical and biological effects of high-frequency sound-waves of great intensity,” Philosophical Magazine, Ser. 7, Vol. 4, No. 22, pp. 417-436.
H. C. Wu, W. S. Hwang and H. J. Lin, 2004, “Development of a three-dimensional simulation system for micro-inkjet and its experimental verification,” Materials Science and Engineering A, Vol. 373, pp. 268-278.
Y. Yoshino, Y. Ushimi, H. Yamada, M. Takeuchi, 2003, “Zinc oxide piezoelectric thin films for bulk acoustic wave resonators,” Murata Manufacturing Co., Ltd., 2-26-10 Tenjin, Nagaoka-kyo, Kyoto, Japan.指導教授 潘敏俊(Min-Chun Pan) 審核日期 2007-10-11 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare