博碩士論文 943203104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:18.226.163.103
姓名 陳月玉(Yue-yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 冷電漿沉積類鑽碳膜之製程模擬分析
(Simulation analysis of the process for deposition of DLC films.)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 格狀自動機探討組織工程細胞體外培養研究★ 細胞在注流式生物反應器之生長研究
★ 週期式圓錐平板裝置之流場分析★ 設計與製作圓錐平板型生物反應器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在以電漿輔助化學氣相法類鑽碳膜的製程中,許多參數影響著成膜速率與成膜品質,包含氣體濃度、氣體溫度與壓力、離子能量和碳源氣體種類等。為釐清影響成膜速率的因素,本文參考以往學者的文獻與其實驗設備,取其圓柱型反應腔軸對稱特性建立 r-z 系統的幾何模型,再以連續體模型模擬電漿流場,並採用 CFD-ACE+ 商
業套裝軟體進行數值計算,最後再根據結果探討控制環境參數對各氣體密度、電子能量或電場等電漿參數的影響。在數值計算模型中,包含電子、離子和不帶電物質等各物質密度(或濃度)皆以連續體方程式表示;電子能量由能量守恆式為之;電場強度或電位勢分佈則以泊松(Poisson)方程式表示。最後,再利用有限體積法進行數值計算。最終模擬結果分三大類逐一討論:流速、溫度與壓力。流速對原料氣體甲烷的濃度是有增益的,當原料注入並產生流速時,對甲烷而言是補充遠大於消耗。然而流速對其他不帶電物質則為損益,即電漿中不帶電物質的產生速率遠不及流出反應腔的部
份,同時也造成沉積物質的流失,薄膜沉積速率因為流速的提升而降低。至於溫度和壓力對各參數的影響皆可由理想氣體定律解釋:定壓下溫度與物質密度成反比,定溫下壓力與物質密度成正比。因此在定壓時,由於沉積物質的密度隨溫度提高而降低,造成沉積速率的下降。而在定溫時,沉積物質的密度隨著壓力升高而增加,沉積速率也隨之提升。總而言之,在本文的模擬結果中,在有入口流速的情況下,以0.01 m/s 有最快的沉積速率,流速過高則會稀釋沉積物質造成反效果。而在環境條件溫度與壓力的控制上,則以高壓低溫環境可得到較快速的沉積速率。
摘要(英) During the process of depositing diamond-like carbon films with plasma-enhanced chemical vapor deposition, deposition rate and the quality of the films were effected by some parameters, like gas concentration, temperature, pressure, ion energy and carbon sources. In order to clarify how these parameters influence the deposition rate, in this paper we consulted to the former work and their experimental setup to create a 2-D physical model. And adopting commercial software CFD-ACE+ as a solver. Finally, we discuss the simulation results. In mathematical model, all species were expressed with continuity equations, while electron energy was solved by energy conservation equation. Besides, electric field or electric potential was in the form of Poisson’s equation. And then the mathematical model was solved with finite volume method. We simulate different inlet flow velocity, gas temperature and pressure to see how the variables will change. Methane was supplied with inlet gas flow, though plasma reactions consumed some of them, methane got more than reaction loss. But the situation was quite different for other species, like the main deposition species methyl. For methyl, the reaction production rates were less than the flow rate that out of the chamber. Therefore, the larger inlet flow the greater loss of reaction products. This also decreases the deposition rate. Gas temperature and pressure followed ideal gas law. Under fixed pressure, temperature gets larger while the gas concentration gets fewer. Under fixed temperature, gas concentration is proportional to the pressure. In our simulation results, the highest deposition rate occurred while inlet velocity equals to 0.01 m/s. And the higher inlet velocity get worse deposition rate. Under control of gas temperature and pressure, high pressure and low temperature would increase deposition rate.
關鍵字(中) ★ 類鑽碳膜
★ 電漿
關鍵字(英) ★ plasma
★ CCP
★ a-C:H
★ DLC
論文目次 中央大學碩士論文授權書 I
論文指導教授推薦書 II
論文口試委員審定書 III
摘要 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 X
第一章 緒論 ……………………………………………………… 1
1.1 研究背景 ……………………………………………… 1
1.2 研究動機與本文架構 ………………………………… 3
第二章 物理系統與數學模型 ……………………………………… 4
2.1 物理系統 ……………………………………………… 4
2.2 基本假設 ……………………………………………… 5
2.3 數學模型 ……………………………………………… 5
2.3.1 化學反應 ………………………………………… 6
2.3.2 電漿流場之動量方程式 ………………………… 7
2.3.3 電子、分子與離子連續方程式 ………………… 8
2.3.4 電子能量方程式 ………………………………… 11
2.3.5 電場方程式 ……………………………………….. 12
2.3.6 沉積模型 ………………………………………… 14
2.3.7 邊界條件 ………………………………………… 15
2.3.8 初始條件 ………………………………………… 20
第三章 數值方法 ………………………………………………… 21
3.1 CFD-ACE+ 簡介 …………………………………… 21
3.2 網格 …………………………………………………… 21
3.3 離散方法 ……………………………………………… 22
3.4 計算設定 ……………………………………………… 24
第四章 結果與討論 ……………………………………………… 25
4.1 入口流速的影響 ……………………………………… 25
4.2 系統溫度的影響 ……………………………………… 29
4.3 系統壓力的影響 ……………………………………… 31
第五章 結論與未來展望 ………………………………………… 32
參考文獻 ………………………………………………………………… 34
附表 ……………………………………………………………………… 37
附圖 ……………………………………………………………………… 42
參考文獻 1. 鈴木秀人,池永 勝,DLC成膜技術,全華科技圖書股份有限公司,台北,2005.
2. 宋建民,鑽石合成,全華科技圖書股份有限公司,台北,2000.
3. Aisenberg, S. and Chabot, R., Ion-beam deposition of thin films of diamondlike carbon, J. Appl. Phys. 42, 2953 (1971)
4. Lifshitz, Y., Diamond-like carbon-present status, Diamond and Related Materials, 8, 1659 (1999)
5. Clausing, R. E., Horton, L. L., Angus, J. C. and Koidl, P., Diamond and Diamond-like Films and Coatings, Plenum Press, New York, 1991.
6. Spear, Karl E. and Dismukes J. P., Synthetic Diamond: Emerging CVD Science and Technology, John Wiley & Sons, Inc., Canada, 1994
7. Sugai, H., Kojima, H., Ishida, A. and Toyoda, H., Spatial distribution of CH3 and CH2 radicals in a methane rf discharge, Appl. Phys. Lett., 56, 2616 (1990).
8. Pecher, P. and Jocob, W., Determination of the absolute radical flux emanating from a methane electron cyclotron resonance plasma, J. Appl. Phys. 73, 31 (1998).
9. Martino, C. D., Demichelis, F. and Tagliaferro, A., Determination of the ratio in a-C:H films by infared spectrometry analysis, Diamond and Related Materials, 4, 1210 (1995)
10. Davis, C. A., A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films, 226. 30 (1993)
11. Robertson, J., The deposition mechanism of diamond-like a-C and a-C:H, Diamond and Related Materials, 3, 361 (1994)
12. Lymberopoulos, D. P. and Economou, D. J. Modeling and simulation of glow discharge plasma reactors, J. Vac. Sci. Technol. A 12, 1229 (1994).
13. Lymberopoulos, D. P. and Economou, D. J. Spatiotemporal electron dynamics in radio-frequency glow discharges: fluid versus dynamic Monte Carlo simulations, J. Phys. D: Appl. Phys., 28, 727 (1995).
14. Bera, K., Farouk, B. and Lee, Y. H., Modeling of 2-D radio-frequency methane glow discharge in cylindrical geometry, JSME Int. Fluid Thermal Eng. B, 41, 429 (1998)
15. Bera, K., Farouk, B. and Lee, Y. H., Simulation of thin carbon film deposition in a radio-frequency methane plasma reactor, J. of the Electrochemical Society, 146, 3264 (1999).
16. Herrebout, D., Bogaerts, A., Yan, M., Gijbel, R., Goedheer, W. and Vanhulsel, A., Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a 1-D and a 2-D fluid model, J. Appl. Phys., 92, 2290 (2002)
17. Okhrimovskyy, A., Bogaerts, A. and Gijbels, R., Incorporating the gas flow in a numerical model of rf discharges in methane, J. Appl. Phys., 96, 3070 (2004).
18. Yoon, S. F., Tan, K. H., Rusli and Ahn J., Modeling and analysis of the electron cyclotron resonance diamond-like carbon deposition process, J. Appl. Phys., 91, 1634 (2002).
19. Mutsukura, N., Inoue, S. and Machi, Y., Deposition mechanism of hydrogenated hard-carbon films in a CH4 rf discharge plasma, J. Appl. Phys., 72, 43 (1992).
20. Gogolides, E., Mary, D., Rhallabi, A. and Turban, G., RF plasmas in methane: prediction of plasma properties and neutral radical densities with combined gas-phase physics and chemistry model, Jpn. J. Appl. Phys., 34, 261 (1995).
21. Sobbia, R., Sansonnens, L., and Bondkowski, J., Uniformity study in large-area showerhead reactors, J. Vac. Sci. Technol. A, 23, 927 (2005).
22. White, F. M., Viscous Fluid Flow, 2006
23. Munson, B. R., Young, D. F., Okiishi, T. H., Fundamental of Fluid Mechanics, 2002
24. Rhallabi, A. and Catherine, Y., Computer simulation of a carbon-deposition plasma in CH4,IEEE Trans. Plasma Sci., 19, 270 (1991).
25. Vossen, J. L. and Kern, W., Thin Film Process II, 1991
26. Cavallotti, C., Masi, M. and Carra, S., Modeling plasma-assisted deposition of diamond-like carbon films, J. of the Electrochemical Society, 145, 4332 (1998).
27. CFD-ACE+ V2004 Module manual.
28. Walter , K. and Vossen, J. L., Thin film process, 1991
29. Cheng, D. K., Fundamentals of engineering electromagnetics
30. 羅吉宗, 薄膜科技與應用, 全華科技圖書股份有限公司,台北,2004.
31. Raveh, A., Martinu, L., Hawthorne, H. M. and Wertheimer, M. R., Mechanical and tribological properties of dual-frequency-plasma-deposited diamin-like carbon, Surf. Coat. Technol. 58, 45 (1993).
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2008-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明