博碩士論文 953203034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:13.59.126.25
姓名 尤俊欽(Jyun-Cin You)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 結合電化學與電泳沉積之微孔複合加工研究
(A study of ECM/EPD complex micro-hole machining technology)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 放電加工表面改質與精修效果之研究★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究
★ 磁場輔助微電化學銑削加工特性之研究★ 磁場輔助微電化學鑽孔加工特性之研究
★ 微結構電化學加工底部R角之改善策略分析與實做研究★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響
★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響
★ 添加石墨粉末之快速穿孔放電加工特性研究★ 派熱司玻璃材料之電化學線切割放電加工特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是利用螺旋電極來同時進行微電化學鑚孔與電泳沉積拋光微孔內壁之複合加工研究。而本研究大致分為兩大部分:
第一部分是先利用螺旋電極進行微電化學鑚孔之研究,螺旋電極於微孔加工中正向旋轉時,新電解液會被帶入螺旋電極之加工區域中,並沿著電極肩部進入電極底部,可將電化學反應產生的氣泡、金屬氧化物、及熱能等雜物擠壓排出,使加工區域的電解液獲得更新;結果顯示可將傳統圓柱電極,加工後之入口孔徑425 μm與出口孔徑362 μm減少為335 μm及299 μm,有效改善微電化學鑽孔後的微孔形狀精度。
第二部分則是複合加工研究,運用電泳沉積法於螺旋電極表面沉積SiC磨粒,其中以酚醛樹脂作為結合劑,經高溫烘烤製程而製成微複合工具,再使用該微複合工具同時施行微電化學鑽孔及微孔內壁拋光之複合加工,利用微細的磨料粒度與披覆沉積層之絕緣性,來達到改善微孔內壁表面粗糙度、錐度與形狀精度;實驗結果顯示,可將螺旋電極電化學鑽孔加工之Ra 0.4 µm降至Ra 0.041 µm,對改善表面粗糙度效果相當明顯。
摘要(英) The study presents ECMD and EPDP complex micro-hole machining by using helical tool simultaneously. This experiment includes two parts:
First, ECMD machining by using helical tool is investigated. New electrolyte is carried to the machining area by rotating helical tool. Therefore, these bubbles, metal oxides and heat that produced by ECM reaction can be removed. Electrolyte also can be renew in the machining area. The inlet and outlet diameters of the micro holes could be improved from 425 μm and 362 μm using cylindrical tool to 355 μm and 299 μm respectively. The result of using helical tool as a novel solution in ECMD process to improve the machining accuracy.
Second, ECMD and EPDP complex micro-hole machining experiment was performed. The helical tool can be deposited with SiC particles in Phenolic resin solution as a micro hybrid tool by electrophoretic deposition phenomenon. The SiC-coated helical tool (micro hybrid tool) is used in ECMD and EPDP complex micro-hole machining.experiments. Expect to using fine SiC particles and insulate coating layer that modify inner surface roughness of micro hole , taper and machining accuracy. When the helical tool is used, the inner surface roughness of micro hole is Ra 0.4 µm. By using micro hybrid tool , the inner surface roughness of micro hole declines markedly to Ra 0.041 µm. The inner surface roughness of micro hole can be significantly improved.
關鍵字(中) ★ 表面粗糙度
★ 微電化學鑽孔
★ 螺旋電極
★ 電泳沉積拋光
★ 微複合工具
關鍵字(英) ★ Electrophoretic deposition polishing
★ Surface roughness
★ Micro hybrid tool
★ Electrochemical micro drilling
★ Helical tool
論文目次 中文摘要 i
英文摘要 ii
謝 誌 iv
目 錄 v
圖 目 錄 viii
表 目 錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-4 研究方法 5
第二章 實驗基礎原理 6
2-1 電化學加工的基礎理論 6
2-1-1 電化學反應機制 6
2-1-2 法拉第定律 8
2-1-3 歐姆定律 8
2-1-4 電極電位-金屬與溶液界面雙電層理論 9
2-1-5 陽極極化曲線及其特徵 10
2-2 電泳沉積法之原理 11
2-2-1 電泳沈積之方式與沈積速率 12
2-2-2 雙電層 14
2-3-3 粉體粒子表面電荷來源 15
2-3-4 電泳懸浮液內粉體粒子間分散行為之機制 16
第三章 實驗設備與材料 18
3-1 基礎實驗相關設備 18
3-2 實驗材料 25
第四章 微電化學鑽孔加工特性之研究 29
4-1 實驗簡介 29
4-2 實驗設備 29
4-3 實驗流程與方法 31
4-4 結果與討論 34
4-4-1 工作電壓對內孔形狀精度之影響 34
4-4-2 電極轉速對內孔形狀精度之影響 36
4-4-3 電解液濃度對內孔形狀精度的影響 38
4-4-4 脈衝時間對內孔形狀精度的影響 40
4-4-5 螺旋電極正轉與反轉對內孔形狀精度影響 44
4-4-6 螺旋電極與圓柱電極之微電化學鑽孔加工結果之差異 45
4-5 微電化學鑽孔加工之較佳單因子實驗參數 47
4-6 結論 48
第五章 結合電化學與電泳沉積之微孔複合加工研究 49
5-1 實驗簡介 49
5-2 實驗設備 49
5-3 實驗流程與方法 52
5-4 結果與討論 56
5-4-1 披覆電壓對電泳沉積後直徑的影響 56
5-4-2 披覆時間對電泳沉積後直徑的影響 58
5-4-3 電極轉速對電泳沉積後直徑的影響 59
5-4-4 SiC濃度對電泳沉積後直徑的影響 60
5-4-5 電泳沉積微複合工具之較佳單因子實驗參數 62
5-4-6 微孔複合加工結果探討 63
5-5 結論 69
第六章 總結論 71
參考文獻 73
個人簡歷 76
參考文獻 [1] J. F. Wilson, (1st), Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
[2] B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
[3] 朱樹敏,電化學加工技術,化學工業出版社,2006。
[4] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, Annals of the CIRP, Vol.55, pp.643-666, 2006.
[5] R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, Vol.289, pp.98-101, 2000.
[6] J. Kozak , Kamlakar P.Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, Vol.149, pp.426-431, 2004.
[7] S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, Vol.28, pp.129-134, 2004.
[8] T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECμM system”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1311-1318, 2006.
[9] K. Chikamori, “Possibilities of electrochemical micromachining”, International Journal of the Japan Society for Precision Engineering, Vol.32, pp.37-38, 1998.
[10] Hattori, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol.109, pp.339-346, 2001.
[11] B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, Vol.43, pp.1301-1310, 2003.
[12] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, Vol.44, pp.1577-1589, 2004.
[13] T. Kurita, M. Hattori, “Development of new-concept desk top size machine tool”, International Journal of Machine Tools & Manufacture, Vol.45, pp.959-965, 2005.
[14] B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, “Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid”, Vol.54, pp.191-194, 2005.
[15] M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, Vol.45, pp.137-152, 2005.
[16] X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, Vol.169, pp.173-178, 2005.
[17] T. Kurita, M. Hattori, “A study of EDM and ECM/ECM-lapping complex machining technology”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1804-1810, 2006.
[18] B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, Annals of CIRP, Vol.55, 2006.
[19] B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, Vol.47, pp.335-342, 2007.
[20] J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, Vol.194, pp.151-158, 2007.
[21] W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, Vol.31, pp.33-39, 2007.
[22] M. S. Park and C. N. Chu, “Micro-electrochemical machining using multiple tool electrodes”, Journal of Micromechanics And Microengineering, Vol.17, pp.1451-1457, 2007.
[23] H. P. Tsui, B. H. Yan, W. T. Wu, S. T. Hsua, “A study on stainless steel mirror surface polishing by using the electrophoretic deposition method”, International Journal of Machine Tools & Manufacture, Vol.47, pp.1965-1970, 2007.
[24] L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, Vol.14, pp.249-254. 2008.
[25] 陳正德,碳化矽的電泳沈積現象探討,國立中央大學機械工程系,碩士論文,2002。
[26] 許笙載,運用電泳沉積法於不銹鋼鏡面拋光之研究,國立中央大學機械工程系,碩士論文,2007。
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明