博碩士論文 953203038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:228 、訪客IP:18.119.122.106
姓名 劉政廷(Jheng-ting Liou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電滲泵之焦耳熱效應分析
(Joule Heating Effects of Electroosmotic Pump)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電滲泵目前在微流體裝置與微電子冷卻方面的應用漸增,對於其傳輸液體表現與溫度變化特性的探討將有助於提升泵的性能。本文以商用的燒結矽片作為驅動流體的多孔介質製作電滲泵,它依據電雙層(electrical double layer)效應驅動流體。本文使用不同濃度(0.5-4 mM)的硼酸鹽溶液、去離子水與氯化鉀(1 mM)溶液為工作流體並利用不同外加電壓(50-150 V)形成電場。溫度量測使用熱電偶(thermocouple)量測電滲泵出口端的溫度變化。實驗顯示當離子濃度提升與外加電壓的增強都會使得焦耳熱效應(Joule heating effect)更加明顯。
鑑於電滲泵作動期間因為水溶液的電解反應在正負極端分別釋出氧氣泡與氫氣泡,本文藉由二層的質子交換膜管(Nafion tubing)套在白金電極上,來降低氣泡對流體連續傳輸的影響。經由此種改善方式,電滲泵可連續作動8小時且流率相當穩定。本文也以自製的燒結矽片作為多孔介質測試其泵的性能,結果顯示自製燒結矽的泵性能與商用的燒結矽的泵性能相當。
摘要(英) The electroosmotic pump (EOP) has been used in the microfluidic devices and in the micro-electronics cooling recently. To investigate the behavior of the transporting liquid and its temperature variation can enhance the performance of the EOP. In this study, the EOP is made from a commercial porous sintered silica frit to transport liquid, which utilizes the electric double layer effect as driving force. Three types of working fluid are tested: including the borate solution with various ranges of concentrations (0.5-4 mM), the deionized water and the potassium chloride solution (1 mM). Moderate range of voltages (50-150 V) was applied for generating electric field inside the pump. The thermocouple is used to measure the temperature variation of the outlet of the EOP. Experimental result reveals that the increases of the ionic concentration and the applied voltage will amplify the Joule heating effect.
Due to the electrolysis reaction on the electrode, the hydrogen and oxygen bubbles will be generated at the anode and cathode, respectively. In order to reduce the bubbles, this study sheathes the platinum wire electrode with two layers of Nafion ion exchange membrane tubes. With this modification this EOP demonstrates continuously operate for eight hours with a stable flow rate. This study also fabricate a frit with self-made the porous sintered silica; its result reveals that the performance of self-made porous frit was comparable to that of the commercial frit.
關鍵字(中) ★ 焦耳熱效應
★ 質子交換膜管
★ 電滲流
★ 電滲泵
關鍵字(英) ★ Nafion tubing
★ Joule heating effect
★ Electroosmotic pump
★ Electroosmotic flow
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
符號說明 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1填充式電滲泵 2
1.2.2多孔矽片電滲泵 3
1.2.3交流式電滲泵 4
1.2.4離子交換膜與氣泡重組器 5
1.2.5焦耳熱效應 6
1.3 研究目的 7
1.4 論文架構 7
第二章 電滲泵作動原理與焦耳熱效應 9
2.1 基本電滲流理論 9
2.1.1電滲流解析解背景 10
2.1.2泵的有效電壓 12
2.1.3孔隙率與扭曲率 13
2.1.4介面電位 13
2.1.5電雙層特徵厚度 15
2.2 焦耳熱效應 16
第三章 電滲泵設計製作 17
3.1 電滲泵製作 17
3.2 實驗設備 19
3.3 實驗材料 19
3.3.1溶液配置 19
3.3.2多孔介質 20
3.3.3 質子交換膜管 21
3.3.4電極 22
3.4多孔介質燒結製程 22
3.5 實驗方法與步驟 23
3.6 實驗誤差 24
第四章 結果與討論 26
4.1 溫度 26
4.1.1 不同濃度的溫度變化 26
4.1.2 定電壓下的長時間溫度變化 32
4.1.3 不同溶液的溫度變化 35
4.1.4 不同電極的溫度與流率變化 37
4.1.5 加裝質子交換膜後的流率暫態變化 40
4.2 自製燒結矽與ROBU燒結矽比較 43
4.2.1 流率 43
4.2.2 壓力 45
4.2.3 效率 46
4.3 實驗重現性與長時間作動下的穩定性 49
第五章 結論與建議 53
5.1 結論 53
5.2 未來改進方向 54
參考文獻 55
參考文獻 1.S.-L. Zeng, Chuan-Hua, J.C. Mikkelsen Jr., and J.G. Santiago, “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79 (2001) 107-114.
2.H.Q. Li, D.C. Roberts, J.L. steyn, K.T. Turners, J.A. Carretero, O. Yaglioglu, Y.H. Su, L. Saggere, N.M. Hagood, S.M. Spearing, M.A. Schmidt, R. Mlcak, and K.S. Breuer, “A high frequency high flow rate piezoelectrically driven MEMS micropump,” Proceedings of the Solid-State Sensor and Actuator Workshop, SC, 4-8 June 2000.
3.P.H. Paul, D.W. Arnold, and D.J. Rakestraw , “Electrokinetic generation of high pressure using porous microstructure,” μ-TAS (micro-Total Analyis System) 98 (1998) 49-53.
4.V. Pretorius, B.J. Hopkins, and J.D. Schieke, “A new concept of high-speed liquid chromatography,” J. Chromatogr., 99 (1974) 23-30.
5.L. Chen, J. Ma, F. Tan, and Y. Guan, “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems,” Sensors and Actuators B, 88 (2003) 260-265,
6.S. Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen Jr., and J.G. Santiago, “Porous glass electroosmotic pumps: design and experiments,” J. Colloid Interface Science, 268 (2003) 143-153.
7.S. Yao, A.M. Myers, J.D. Posner, K.A. Rose, and J.G. Santiago “Electroosmotic pumps fabricated from porous silicon membranes,” J. Microelectromechan. Sys., 15 (2005) 717-728.
8.S.K. Vajandar, D.-Y. Xu, D.A. Markov, J.P. Wikswo, W. Hofmeister, and D. Li “SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping,” Nanotechnology, 18 (2007) 1-8.
9.A. Brask, J.P. Kutter, and H. Bruus, “Long-term stable electroosmotic pump with ion exchange membranes,” Lab on A Chip, 5 (2005), 730-738.
10.C.-W. Lin, S. Yao, J.D. Posner, A.M. Myers, and J.G. Santiago “Toward orientation-independent design for gas recombination in closed-loop electroosmotic pumps,” Sensors and Actuators B, 128 (2007), 334–339.
11.C.L. Rice and R. Whitehead “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., 69 (1965) 4017.
12.S. Yao and J.G. Santiago “Porous glass electroosmotic pumps: theory,” J. Colloid Interface Science, 268 (2003), 133-142.
13.A. Ramos, H. Morgan, N.G. Green, and A. Castellanos, “AC electric-field- induced fluid flow in microelectrodes,” J. Colloid Interface Science, 217 (1999), 420–422.
14.A. Ajdari, “Pumping liquids using asymmetric electrode arrays,” Physical Review E, 61(1) (2000) R45-R48.
15.A.B.D. Brown, C.G. Smith, and A.R. Rennie, “Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes,” Physical Review E, 63 (2000) 1-8.
16.N.G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, “Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements,” Physical Review E, 61(4) (2000) 4011-4018.
17.N.G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, “Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,” Physical Review E, 61(4) (2000) 4019-4028.
18.Y. Kang, C. Yang, and X. Huang, “AC electroosmosis in microchannels packed with a porous medium,” J. Micromech. Microeng. 14 (2004) 1249–1257.
19.A. Brask, D. Snakenborg, J. P. Kutter, and H. Bruus, “AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves,” Lab on A Chip, 6 (2006) 280-288.
20.V.M. Barragan and C.R. Bauza, “Electroosmosis through a cation-exchange membrane: Effect of an ac perturbation on the electroosmotic flow,” J. Colloid Interface Science, 230 (2000) 359–366.
21.X. Xaun, B. Xu, D. Sinton, and D. Li, “Electroosmosis flow with joule heating effects,” Lab Chip, 4 (2004) 230–236.
22.K. Horiuchi and P. Dutta, “Joule heating effects in electroosmotically driven microchannel flows,” Inter. J. Heat and Mass Transfer, 47 (2004) 3085–3095.
23.T. Ishido and H. Mizutani, “Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics,” J. Geophys. Res., 86 (1981) 1763–1775.
24.P. Somasundaran and R.D. Kulkani, “A new streaming potential apparatus and study of temperature effects using it,” J. Coll. Interf. Sci., 45 (1973) 591–600.
25.A. Brask, “Electroosmotic micropumps,” Ph.D thesis, Department of Micro and Nanotechnology, Technical University of Denmark, (2005).
26.Perma pure公司 http://www.permapure.com/
27.溫添進、張憲彰、胡啟章,“鎳鈀及鉑電極之電化學特性”,界面科學會誌,27 (2005), 255-266。
28.D. Sinton, X.-C. Xuan, and D.-Q. Li “Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure,” Experiments in Fluids, 37 (2004) 872-882.
29.A.S. Rathore, “Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns,” J. Chromatography A, 1037 (2004) 431-443.
30.X. Xuan, D. Sinton, and D.-Q. Li “Thermal end effect on electroosmotic flow in a capillary,” Inter. J. Heat and Mass Transfer, 47 (2004) 3145-3157.
31.G.Y. Tang, C. Yang, J.C. Chai, and H.Q. Gong "Joule heating effect on electroosmotic flow and mass species transport in a microcapillary," Inter. J. Heat and Mass Transfer, 47 (2004), 215-227.
32.李俊鵬,微電滲泵之暫態熱流研究,國立中央大學機械工程研究所碩士論文,(2007)。
33.陳民彥,電滲泵的製作與性能測試,國立中央大學機械工程研究所碩士論文,(2005)。
34.賴俊伯,無動件式高流率電滲泵的製作與特性分析,國立中央大學機械工程研究所碩士論文,(2007)。
35.P. Wang, Z. Chen, and H.C. Chang, “A new electro-osmotic pump based on silica monoliths,” Sensors and Actuators B, 113 (2006), 500–509.
36.D. Kim, J.D. Posner, and J.G. Santiago, “High flow rate per power electroosmotic pumpingusing low ion density solvents,” Sensors and Actuators A, 141 (2008) 201–212
37.B.J. Kirby and E.F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 25 (2004), 187–202.
38.C.J. Evenhuis, R.M. Guijt, M. Macka, P.J. Marriott, and P.R. Haddad “Variations of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis,” Electrophoresis, 27 (2006), 672-676.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2008-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明