參考文獻 |
1.S.-L. Zeng, Chuan-Hua, J.C. Mikkelsen Jr., and J.G. Santiago, “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79 (2001) 107-114.
2.H.Q. Li, D.C. Roberts, J.L. steyn, K.T. Turners, J.A. Carretero, O. Yaglioglu, Y.H. Su, L. Saggere, N.M. Hagood, S.M. Spearing, M.A. Schmidt, R. Mlcak, and K.S. Breuer, “A high frequency high flow rate piezoelectrically driven MEMS micropump,” Proceedings of the Solid-State Sensor and Actuator Workshop, SC, 4-8 June 2000.
3.P.H. Paul, D.W. Arnold, and D.J. Rakestraw , “Electrokinetic generation of high pressure using porous microstructure,” μ-TAS (micro-Total Analyis System) 98 (1998) 49-53.
4.V. Pretorius, B.J. Hopkins, and J.D. Schieke, “A new concept of high-speed liquid chromatography,” J. Chromatogr., 99 (1974) 23-30.
5.L. Chen, J. Ma, F. Tan, and Y. Guan, “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems,” Sensors and Actuators B, 88 (2003) 260-265,
6.S. Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen Jr., and J.G. Santiago, “Porous glass electroosmotic pumps: design and experiments,” J. Colloid Interface Science, 268 (2003) 143-153.
7.S. Yao, A.M. Myers, J.D. Posner, K.A. Rose, and J.G. Santiago “Electroosmotic pumps fabricated from porous silicon membranes,” J. Microelectromechan. Sys., 15 (2005) 717-728.
8.S.K. Vajandar, D.-Y. Xu, D.A. Markov, J.P. Wikswo, W. Hofmeister, and D. Li “SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping,” Nanotechnology, 18 (2007) 1-8.
9.A. Brask, J.P. Kutter, and H. Bruus, “Long-term stable electroosmotic pump with ion exchange membranes,” Lab on A Chip, 5 (2005), 730-738.
10.C.-W. Lin, S. Yao, J.D. Posner, A.M. Myers, and J.G. Santiago “Toward orientation-independent design for gas recombination in closed-loop electroosmotic pumps,” Sensors and Actuators B, 128 (2007), 334–339.
11.C.L. Rice and R. Whitehead “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., 69 (1965) 4017.
12.S. Yao and J.G. Santiago “Porous glass electroosmotic pumps: theory,” J. Colloid Interface Science, 268 (2003), 133-142.
13.A. Ramos, H. Morgan, N.G. Green, and A. Castellanos, “AC electric-field- induced fluid flow in microelectrodes,” J. Colloid Interface Science, 217 (1999), 420–422.
14.A. Ajdari, “Pumping liquids using asymmetric electrode arrays,” Physical Review E, 61(1) (2000) R45-R48.
15.A.B.D. Brown, C.G. Smith, and A.R. Rennie, “Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes,” Physical Review E, 63 (2000) 1-8.
16.N.G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, “Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements,” Physical Review E, 61(4) (2000) 4011-4018.
17.N.G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, “Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,” Physical Review E, 61(4) (2000) 4019-4028.
18.Y. Kang, C. Yang, and X. Huang, “AC electroosmosis in microchannels packed with a porous medium,” J. Micromech. Microeng. 14 (2004) 1249–1257.
19.A. Brask, D. Snakenborg, J. P. Kutter, and H. Bruus, “AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves,” Lab on A Chip, 6 (2006) 280-288.
20.V.M. Barragan and C.R. Bauza, “Electroosmosis through a cation-exchange membrane: Effect of an ac perturbation on the electroosmotic flow,” J. Colloid Interface Science, 230 (2000) 359–366.
21.X. Xaun, B. Xu, D. Sinton, and D. Li, “Electroosmosis flow with joule heating effects,” Lab Chip, 4 (2004) 230–236.
22.K. Horiuchi and P. Dutta, “Joule heating effects in electroosmotically driven microchannel flows,” Inter. J. Heat and Mass Transfer, 47 (2004) 3085–3095.
23.T. Ishido and H. Mizutani, “Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics,” J. Geophys. Res., 86 (1981) 1763–1775.
24.P. Somasundaran and R.D. Kulkani, “A new streaming potential apparatus and study of temperature effects using it,” J. Coll. Interf. Sci., 45 (1973) 591–600.
25.A. Brask, “Electroosmotic micropumps,” Ph.D thesis, Department of Micro and Nanotechnology, Technical University of Denmark, (2005).
26.Perma pure公司 http://www.permapure.com/
27.溫添進、張憲彰、胡啟章,“鎳鈀及鉑電極之電化學特性”,界面科學會誌,27 (2005), 255-266。
28.D. Sinton, X.-C. Xuan, and D.-Q. Li “Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure,” Experiments in Fluids, 37 (2004) 872-882.
29.A.S. Rathore, “Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns,” J. Chromatography A, 1037 (2004) 431-443.
30.X. Xuan, D. Sinton, and D.-Q. Li “Thermal end effect on electroosmotic flow in a capillary,” Inter. J. Heat and Mass Transfer, 47 (2004) 3145-3157.
31.G.Y. Tang, C. Yang, J.C. Chai, and H.Q. Gong "Joule heating effect on electroosmotic flow and mass species transport in a microcapillary," Inter. J. Heat and Mass Transfer, 47 (2004), 215-227.
32.李俊鵬,微電滲泵之暫態熱流研究,國立中央大學機械工程研究所碩士論文,(2007)。
33.陳民彥,電滲泵的製作與性能測試,國立中央大學機械工程研究所碩士論文,(2005)。
34.賴俊伯,無動件式高流率電滲泵的製作與特性分析,國立中央大學機械工程研究所碩士論文,(2007)。
35.P. Wang, Z. Chen, and H.C. Chang, “A new electro-osmotic pump based on silica monoliths,” Sensors and Actuators B, 113 (2006), 500–509.
36.D. Kim, J.D. Posner, and J.G. Santiago, “High flow rate per power electroosmotic pumpingusing low ion density solvents,” Sensors and Actuators A, 141 (2008) 201–212
37.B.J. Kirby and E.F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 25 (2004), 187–202.
38.C.J. Evenhuis, R.M. Guijt, M. Macka, P.J. Marriott, and P.R. Haddad “Variations of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis,” Electrophoresis, 27 (2006), 672-676. |