參考文獻 |
Section 1.1
[1] Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology (John
Wiley & Sons, 1999).
[2] J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI
(Kluwer,Boston,MA,1991).
[3] S. Cristoloveanu and S. S. Li, Electrical Characterization of Silicon-on-Insulator Materials and Devices (Kluwer Academic, Boston, 1995).
[4] http://researchweb.watson.ibm.com/journal/rd/462/shahidi.html
[5] Julian Blake, “SIMOX (Separation by Implantation of Oxygen),” Encyclopedia of Physical Science and Technology, EN014H-691, 2001.
[6] http://www.eetimes.com/
Section 2.1
[1] Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology (John Wiley & Sons, 1999).
[2] Hong Xiao, Introduction to Semiconductor Manufacturing Technology (Pearson, Prentice Hall)
[3] K. Sakaguchi, N. Sato, K. Yamagata, Y. Fujiyama, T. Yonehara, Ext. Abst. 1994 Int. Conf. SSDM, The Japan Society of Applied Physics, Yokohama, pp.259-261(1994), Jpn. J. Appl. Phys., 34, 842-847(1995) 65
[4] N. Sato, K. Sakaguchi, K. Yamagata, Y. Fujiyama, T. Yonehara, J. Electrochem. Soc. 142, 3116-3122(1995)
[5] K. Ohmi, K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, T. Yonehara, Ext. Abst. 1999 Int. Conf. SSDM, The Japan Society of Applied Physics, Tokyo, pp.354-355(1999)
[6] K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohmi, T. Yonehara, Proc. 1999 IEEE Int. SOI Conf., IEEE, Rohnert Park, pp.110-111(1999)
[7] William G. En, Igor J. Malik, Michael A. Bryan, Shari Farrens, Francois J. Henley, N. W. Cheung, C. Chan, ”The Genesis Process: A New SOI wafer fabrication method,” IEEE Inter. SOI Conf., 1998, pp. 163-164
[8] K. Henttinen, I. Suni, S. S. Lau, Appl. Phys. Lett. 76, pp. 2370-2372 (2000)
[9] Henley et al., U. S. Patent 6013563 (2000)
[10] Henley et al., U. S. Patent 6184111 (2001)
[11] M. Bruel, U.S. Patent No. 5374564 (1994)
[12] M. Bruel, “Silicon on insulator material technology”, Electron. Lett. 31, 1201 (1995)
[13] M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman, and E. E. Chaban, J. Vac. Sci. Technol. B 15, 1065 (1997)
Section 2.2
[1] J. R. Conrad, “Method and apparatus for plasma source ion implantation,” U. S. patent 4,764,394, Wisconsin Alumni Research Foundation, Madison, WI, 1988.
[2] A. Anders, “Handbook of plasma immersion ion implantation and deposition,” John Wiley & Sons, New York, 2000. 66
[3] P. K. Chu, C. Chan, “Application of plasma immersion ion implantation in microelectronics - a brief review,” Surf. Coat. Technol. 136 (2001), 151-156
[4] M. I. Current, W. Liu, I. S. Roth, et al., Surf. Coat. Technol. 136 (2001), 138
[5] A. Y. Usenko, A. G. Ulyashin, “Thinner Silicon-on Insulator Using Plasma Hydrogen,”Jpn. J. Appl. Phys. 41 (2002), 5021-5023.
[6] X. Lu, N. W. Cheung, M. D. Strathman, P. K. Chu, B. Doyle, “Ion-cut silicon-on-insulator fabrication with plasma immersion ion implantation,” Appl. Phys. Lett., vol. 71, no. 19, pp.2767-2769, 1997.
[7] N. W. Cheung, “Processing considerations with plasma immersion ion implantation,”Surf. Coat. Technol. 156 (2002), 24-30
[8] L. M. Feng, A. J. Lamm, W. Liu, E. Garces, C. Chan, M. I. Current, F. Henley, ”A Plasma Immersion Ion Implantation System for SOI Wafer Fabrication,” Ion Implantation Technology, IEEE Conf. (2000), 289-292
[9] Z. Fan, P. K. Chu, C. Chan, N. W. Cheung, “Sample stage induced dose and energy nonuniformity in plasma immersion ion implantation of silicon,” Appl. Phys. Lett., vol. 73, no. 2, pp.202-204, 1998.
[10] Z. Fan, P. K. Chu, N. W. Cheung, C. Chan, IEEE Tran. Plasma Sci., vol. 27, no. 2, pp. 633-646, 1999.
[11] X. Lu, S. S. K. Iyer, J. Min, Z. Fan, J. B. Liu, P. K. Chu, C. Hu, N. W. Chueng, ”SOI material technology using plasma immersion ion implantation,” Proceedings 1996 IEEE International SOI Conference, Oct.1996.
[12] J. B. Liu, S. S. K. Iyer, P. K. Chu, et al. “Formation of buried oxide in silicon using separation by plasma implantation of oxygen,” Appl. Phys. Lett., vol. 67, no. 16, pp.2361-2363, 1995. 67
[13] P. K. Chu, “Contamination issues in hydrogen plasma immersion ion implantation of silicon-a brief review,” Surf. Coat. Technol. 156 (2002), 244-252
[14] Z. Fan, X. Zeng, P. K. Chu, C. Chan, M. Watanabe, “Surface metal contamination on silicon wafers after hydrogen plasma immersion ion implantation,” Nucl. Instrum. Methods Phys. Res. B 155 (1999), 75-78
[15] P. Chen, P. K. Chu, et al. “Plasma htdrogenation of strain-relaxed SiGe/Si heterostructure for layer transfer,” Appl. Phys. Lett., vol. 85, no. 21, pp.4944-4946, 2004.
[16] P. Chen, P. K. Chu, et al. “Investigation of plasma hydrogenation and trapping mechanism for layer transfer,” Appl. Phys. Lett., vol. 86, 031904, 2004.
[17] P. Chen, S. S. Lau, et al. “Silicon layer transfer using plasma hydrogenation,” Appl. Phys. Lett., vol. 87, 111910, 2005.
[18] L. Shao, et al., “Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation,” Appl. Phys. Lett. 87, 091902 , 2005.
[19] A. Antonelli and J. Bernholc, Phys. Rev. B 40, 10643, 1989.
[20] L. Fedina, O. I. Lebedev, G. Van Tendeloo, J. Van Landuyt, O. A. Mironov, and E. H. C. Parker, Phys. Rev. B 61, 10336, 2000.
[21] S. Ogut, H. Kim, and J. R. Chelikowsky, Phys. Rev. B 56, R11353, 1997.
[22] M. J. Aziz, Appl. Phys. Lett. 70, 2810, 1997.
[23] L. Shao, et al., “H-induced platelet and crack formation in hydrogenated epitaxial Si/Si0.98B0.02/Si structures,” Appl. Phys. Lett. 88, 021901, 2006.
[24] G. Dieter, Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986).
[25] H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook (Del Research Corp., Hellertown, PA, 1985).
[26] P. K. Chu, S. Qin, C. Chan, N. W. Cheung, P. K. Ko, “Instrumental and Process Considerations for the Fabrication of Silicon-on-Insulators (SOI) Structures by Plasma 68 Immersion Ion Implantation,” IEEE Tran. Plasma Sci., vol. 26, no. 1, pp. 79-84, 1998.
[27] P. K. Chu, X. Zeng, ” Hydrogen-induced surface blistering of sample chuck materials in hydrogen plasma immersion ion implantation” J. Vac. Sci. Technol., A 19(5), 2001.
[28] D. T. K. Kwok, Z. M. Zeng, P. K. Chu, T. E. Sheridan, ” Hybrid simulation of sheath and ion dynamics of plasma implantation into ring-shaped targets,” J. Phys. D: Appl. Phys. 34, pp.1091–1099, 2001. Section 2.3
[1] D. J. Paul, Thin Solid Film, 321, 172 (1998)
[2] F. Schaffler, Thin Solid Film, 321, 1 (1998)
[3] S. T. Pantelides, S. Zollner, Silicon-Germanium Carbon Alloy: Growth, Properties and Applications, (Taylor & Francis, 2002)
[4] T. A. Lando, M. T. Currie, et al., ”SiGe-free strained Si on insulator by wafer bonding and layer transfer,” Appl. Phys. Lett. 82(24), 4256 (2003)
[5] J. C. Hean, J. Cryst. Growth 81, 411 (1987)
[6] S. S. lyer, J. C. Tsang, W. Copel, P. R. Pukite, and R. M. Tromp, Appl. Phys. Lett. 54, 219 (1989)
[7] P. C. Zalm, G. F. A. van de Walle, D. J. Gravesteijn, and A. A. van Gorkum, Appl. Phys. Lett 55, 2520 (1989)
[8] J. H. Comfort, R. Reif, “Plasma-enhanced deposition of high-quality epitaxial silicon at low temperatures,” Appl. Phys. Lett. 51(24), 2701 (1987)
[9] S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, K. Takahashi, ”Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200°C,”Appl. Phys. Lett. 49(2), 79 (1986)
69
[10] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett. 48(12), 797 (1986)
[11] B. S. Meyerson, “Low-temperature Si and Si:Ge epitaxy by ultrahigh-vacuum/chemical vapor deposition: Process fundamentals,” IBM J. RES. DEVELO. 34(6), 806 (1990)
[12] G. L. Patton, J. H. komfort, Bl S. Meyerson, E. F. Crabbe, G. L. Scilla, E. DeFresart, J. M. C. Stork, J. Y.-C. Sun, D. L. Harame, and J. N. Burghartz, IEEE Electron Device Lett. 11, 171 ( 1990)
[13] Hong Xiao, Introduction to Semiconductor Manufacturing Technology (Pearson, Prentice Hall)
[14] Guozhong Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, (Imperial College Press, 2004)
[15] S. C. Jain, Germanium-Silicon Strained Layers and Heterostructures, Advances in Electronics and Electron Physics series, (Supplement 24), Editor-in-chief of the series: Peter W. Hawkes, (Academic Press, Boston 1994)
[16] S. C. Jain, M. Willander, Silicon-Germanium Strained Layers and Heterostructures, Semiconductors and Semimetals volume 74, Treatise Editors: Robert K. Willardson, Eicke R. Weber, (Academic Press, Boston 2003)
[17] J. Y. Tsao, B. W. Dodson, S. T. Picraux, D. M. Cornelison, ”Critical Stress for SixGe1-x Strained-Layer Plasticity,” Phys. Rev. Lett., 59(21), 2455 (1987)
[18] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, I. K. Robinson, J. Vac. Sci. Technol. A, 2, 436 (1984)
[19] E. Kasper, H. J. Herzog, H. Kibbel, Appl. Phys., 8, 199 (1975)
[20] M. L. Green, B. E. Weir, D. Brasen, Y. F. Hsieh, G. Higashi, A. Feygenson, L. C. Feldman, and R. L. Headrick, J. Appl. Phys., 69, 745 (1991)
[21] D. C. Houghton, J. Appl. Phys., 70(4), 15 (1991) 70
[22] J. Singh, Electronic and optoelectronic properties of semiconductor structures, (Cambridge University Press, New York, 2003)
[23] E. A. Fitzgerald, Y.-H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y.-J Mii, and B. E. Weir, ”Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates,” Appl. Phys. Lett. 59(7), 811 (1991)
[24] D. B. Noble, J. L. Hoyt, J. F. Gibbons, M. P. Scott, S. S. Laderman, S. J. Rosner, T. I. Kamins, “Thermal stability of Si/Si1-xGex/Si heterojunction bipolar transistor structures grown by limited reaction processing,” Appl. Phys. Lett. 55(19), 1978 (1989)
[25] R. Hull, J. C. Bean, Germanium Silicon: Physics and Materials, Semiconductors and Semimetals volume 56, Treatise Editors: Robert K. Willardson, Eicke R. Weber, (Academic Press, Boston 1999)
Section 2.4
[1] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou, “Deactivation of the boron acceptor in silicon by hydrogen” Appl. Phys. Lett. 43, p.204 (1983).
[2] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou and S. C.-S. Pan, ”Deactivation of Group III acceptors in silicon during keV electron irradiation” Appl. Phys. Lett. 43, p.962 (1983).
[3] J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser and R. O. Wance, ” Neutralization of shallow acceptor levels in Silicon by atomic hydrogen”, Phys. Rev. Lett. 51, p.2224 (1983).
[4] J. I. Pankove, R. O. Wance and J. E. Berkeyheiser, ” Neutralization of acceptors in Silicon by atomic hydrogen”, Appl. Phys. Lett. 45, p.1100 (1984). 71
[5] A. J. Tavendale, D. Alexiev and A. A. Williams, ” Field drift of the hydrogen-related, acceptor-neutralizing defect in diodes from hydrogenated silicon”, Appl. Phys. Lett. 47, p.316 (1985).
[6] C. G. Van de Walle, Y. Bar-Yam and S. T. Pantelides, ” Theory of Hydrogen Diffusion and Reactions in Crystalline Silicon”, Phys. Rev. Lett. 60, p.2761 (1988).
[7] S. T. Pantelides, ”Effect of hydrogen on shallow dopants in crystalline silicon”, Appl. Phys. Lett. 50, p.995 (1987).
[8] J. I. Pankove, “Temperature dependence of boron neutralization in silicon by atomic hydrogen”, J. Appl. Phys. 68, p.6532 (1990).
[9] J. T. Borenstein, J. W. Corbett and S. J. Pearton, ”Kinetic model for hydrogen reaction in boron-doped silicon”, J. Appl. Phys. 73, p.2751 (1993).
[10] A. D. Marwick, G. S. Oehrlein and M. Wittmer, “High hydrogen concentrations produced by segregation into p+ layers in silicon”, Appl. Phys. Lett. 59, p.198 (1991).
[11] C. P. Herrero and M. Stutzmann, “Microscopic structure of boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38, p.12668 (1988).
[12] L. Korpás, J. W. Corbett and S. K. Estreicher, “Multiple trapping of hydrogen at boron and phosphorus in silicon”, Phys. Rev. B 46, p.12365 (1992).
[13] J. C. Noya, C. P. Herrero and R. Ramírez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B 56, p.15139 (1997).
[14] N. M. Johnson, “Mechanism for hydrogen compensation of shallow-acceptor impurities in single-crystal silicon”, Phys. Rev. B 31, p.5525 (1985).
[15] B. L. Sopori, Y. Zhang and R. Reedy, “H Diffusion for Impurity and Defect Passivation: A Physical Model for Solar Cell Processing”, Procd. 29th IEEE PVSC, p.222 (2002).
[16] Y.-H. Xie, H. S. Luftman, J. Lopata, J. C. Bean, “Hydrogenation of molecular beam epitaxial Ge0.36Si0.64 on Si”, Appl. Phys. Lett. 55, p.684 (1989). 72
[17] Y. Zhang, “Modeling Hydrogen Diffusion for Solar Cell Passivation and Process Optimization”, New Jersey Institute of Technology, Ph. D. Dissertation (2002) |