博碩士論文 963203047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:3.135.217.85
姓名 巫秉融(Ping-Jung Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氫等離子體吸附成核、聚核、成膜分離矽奈米薄膜現象之研究
(Study of Nucleation, Mergence, Growth of Gas Film by Hydrogen Plasma to Split Nano-Scale Layer from Substrate)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討以氫電漿浸沒式離子佈植技術取代智切法Smart-cut®製程中傳統氫離子佈植技術的可能性。氫電漿浸沒式離子佈植技術相較於傳統氫離子佈植,具有佈植面積大、效率高、低成本的優勢。智切法中的氫離子佈植製程透過質譜儀篩選出單一種類離子,再將其加速注入基板的特定深度,藉以定義薄膜分離位置。但氫電漿浸沒式離子佈植系統中排除了質譜儀的使用,雖然大幅降低機台成本,在佈植過程中卻會同時植入H+、H2+、H3+三種不同的氫離子,在加速能量相同,荷/質比卻不同的情況下,在矽塊材的表面形成分布廣泛的氫離子佈植區域,無法定義出明確的薄膜分離位置。我們為了維持氫電漿浸沒式離子佈植技術既有的低成本優勢,在不加裝質譜儀前提下,試圖以特殊設計的異質基板結構,解決氫電漿浸沒式離子佈植技術中,由於分布廣泛的氫離子佈植區域而無法定義出明確的薄膜分離位置的問題;同時藉由特定元素的導入,試圖將智切法製程中,薄膜分離時所需的450°C熱處理溫度降低至250°C之下。換言之,本研究成果可藉由特殊的嵌入式異質結構明確定義轉移薄膜的厚度,並降低製程所需的熱處理溫度。不同於傳統智切法製程中以氫離子佈植能量決定欲轉移之薄膜的厚度,本研究為100奈米以下的絕緣層上矽基板製作方式提供一項創新的技術。
摘要(英) This research investigates the feasibility of the hydrogen plasma immersion ion implantation system (PIII) replacing the conventional ion implantation step in Smart-cut process. PIII system offers several advantages such as large implanted area, high throughput, and low cost as compared with conventional ion implantation. The hydrogen ion implantation in Smart-cut process selects specific hydrogen ions by extraction system and then accelerates it to implant into the specific depth at certain implant energy for layer splitting. Although there is no extraction implement in hydrogen PIII system for low cost, a large distribution area is formed by three ions with same implanted energy but different charge/mass, H+, H2+, and H3+. The surface roughness of transferred layer increases due to unapparent layer splitting position. A special heterostructure substrate was designed and combined with low cost hydrogen PIII without extraction system to solve this problem. Moreover, the insertion of an extra element let us decrease the annealing temperature for layer splitting to 250°C in contrast to the temperature used in Smart-cut process, 450°C. In other words, this research achievement can define the thickness of transferred layer and reduce the annealing temperature as a result of the special inserted heterostructure. This research supplies an innovative technique different from conventional Smart-cut process for the top layer of silicon on insulator fabrication less than 100nm thickness.
關鍵字(中) ★ 絕緣層上覆矽
★ 電漿浸沒式離子佈植
關鍵字(英) ★ silicon on insulator
★ plasma immersion ion implantation
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Silicon on Insulator (SOI) materials 1
Chapter 2 Literature Reviews 5
2.1 Conventional thin SOI fabrication methods 5
2.1.1 BESOI 5
2.1.2 SIMOX 6
2.1.3 ELTRAN 6
2.1.4 NanoTec
參考文獻 Section 1.1
[1] Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology (John
Wiley & Sons, 1999).
[2] J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI
(Kluwer,Boston,MA,1991).
[3] S. Cristoloveanu and S. S. Li, Electrical Characterization of Silicon-on-Insulator Materials and Devices (Kluwer Academic, Boston, 1995).
[4] http://researchweb.watson.ibm.com/journal/rd/462/shahidi.html
[5] Julian Blake, “SIMOX (Separation by Implantation of Oxygen),” Encyclopedia of Physical Science and Technology, EN014H-691, 2001.
[6] http://www.eetimes.com/
Section 2.1
[1] Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology (John Wiley & Sons, 1999).
[2] Hong Xiao, Introduction to Semiconductor Manufacturing Technology (Pearson, Prentice Hall)
[3] K. Sakaguchi, N. Sato, K. Yamagata, Y. Fujiyama, T. Yonehara, Ext. Abst. 1994 Int. Conf. SSDM, The Japan Society of Applied Physics, Yokohama, pp.259-261(1994), Jpn. J. Appl. Phys., 34, 842-847(1995) 65
[4] N. Sato, K. Sakaguchi, K. Yamagata, Y. Fujiyama, T. Yonehara, J. Electrochem. Soc. 142, 3116-3122(1995)
[5] K. Ohmi, K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, T. Yonehara, Ext. Abst. 1999 Int. Conf. SSDM, The Japan Society of Applied Physics, Tokyo, pp.354-355(1999)
[6] K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohmi, T. Yonehara, Proc. 1999 IEEE Int. SOI Conf., IEEE, Rohnert Park, pp.110-111(1999)
[7] William G. En, Igor J. Malik, Michael A. Bryan, Shari Farrens, Francois J. Henley, N. W. Cheung, C. Chan, ”The Genesis Process: A New SOI wafer fabrication method,” IEEE Inter. SOI Conf., 1998, pp. 163-164
[8] K. Henttinen, I. Suni, S. S. Lau, Appl. Phys. Lett. 76, pp. 2370-2372 (2000)
[9] Henley et al., U. S. Patent 6013563 (2000)
[10] Henley et al., U. S. Patent 6184111 (2001)
[11] M. Bruel, U.S. Patent No. 5374564 (1994)
[12] M. Bruel, “Silicon on insulator material technology”, Electron. Lett. 31, 1201 (1995)
[13] M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman, and E. E. Chaban, J. Vac. Sci. Technol. B 15, 1065 (1997)
Section 2.2
[1] J. R. Conrad, “Method and apparatus for plasma source ion implantation,” U. S. patent 4,764,394, Wisconsin Alumni Research Foundation, Madison, WI, 1988.
[2] A. Anders, “Handbook of plasma immersion ion implantation and deposition,” John Wiley & Sons, New York, 2000. 66
[3] P. K. Chu, C. Chan, “Application of plasma immersion ion implantation in microelectronics - a brief review,” Surf. Coat. Technol. 136 (2001), 151-156
[4] M. I. Current, W. Liu, I. S. Roth, et al., Surf. Coat. Technol. 136 (2001), 138
[5] A. Y. Usenko, A. G. Ulyashin, “Thinner Silicon-on Insulator Using Plasma Hydrogen,”Jpn. J. Appl. Phys. 41 (2002), 5021-5023.
[6] X. Lu, N. W. Cheung, M. D. Strathman, P. K. Chu, B. Doyle, “Ion-cut silicon-on-insulator fabrication with plasma immersion ion implantation,” Appl. Phys. Lett., vol. 71, no. 19, pp.2767-2769, 1997.
[7] N. W. Cheung, “Processing considerations with plasma immersion ion implantation,”Surf. Coat. Technol. 156 (2002), 24-30
[8] L. M. Feng, A. J. Lamm, W. Liu, E. Garces, C. Chan, M. I. Current, F. Henley, ”A Plasma Immersion Ion Implantation System for SOI Wafer Fabrication,” Ion Implantation Technology, IEEE Conf. (2000), 289-292
[9] Z. Fan, P. K. Chu, C. Chan, N. W. Cheung, “Sample stage induced dose and energy nonuniformity in plasma immersion ion implantation of silicon,” Appl. Phys. Lett., vol. 73, no. 2, pp.202-204, 1998.
[10] Z. Fan, P. K. Chu, N. W. Cheung, C. Chan, IEEE Tran. Plasma Sci., vol. 27, no. 2, pp. 633-646, 1999.
[11] X. Lu, S. S. K. Iyer, J. Min, Z. Fan, J. B. Liu, P. K. Chu, C. Hu, N. W. Chueng, ”SOI material technology using plasma immersion ion implantation,” Proceedings 1996 IEEE International SOI Conference, Oct.1996.
[12] J. B. Liu, S. S. K. Iyer, P. K. Chu, et al. “Formation of buried oxide in silicon using separation by plasma implantation of oxygen,” Appl. Phys. Lett., vol. 67, no. 16, pp.2361-2363, 1995. 67
[13] P. K. Chu, “Contamination issues in hydrogen plasma immersion ion implantation of silicon-a brief review,” Surf. Coat. Technol. 156 (2002), 244-252
[14] Z. Fan, X. Zeng, P. K. Chu, C. Chan, M. Watanabe, “Surface metal contamination on silicon wafers after hydrogen plasma immersion ion implantation,” Nucl. Instrum. Methods Phys. Res. B 155 (1999), 75-78
[15] P. Chen, P. K. Chu, et al. “Plasma htdrogenation of strain-relaxed SiGe/Si heterostructure for layer transfer,” Appl. Phys. Lett., vol. 85, no. 21, pp.4944-4946, 2004.
[16] P. Chen, P. K. Chu, et al. “Investigation of plasma hydrogenation and trapping mechanism for layer transfer,” Appl. Phys. Lett., vol. 86, 031904, 2004.
[17] P. Chen, S. S. Lau, et al. “Silicon layer transfer using plasma hydrogenation,” Appl. Phys. Lett., vol. 87, 111910, 2005.
[18] L. Shao, et al., “Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation,” Appl. Phys. Lett. 87, 091902 , 2005.
[19] A. Antonelli and J. Bernholc, Phys. Rev. B 40, 10643, 1989.
[20] L. Fedina, O. I. Lebedev, G. Van Tendeloo, J. Van Landuyt, O. A. Mironov, and E. H. C. Parker, Phys. Rev. B 61, 10336, 2000.
[21] S. Ogut, H. Kim, and J. R. Chelikowsky, Phys. Rev. B 56, R11353, 1997.
[22] M. J. Aziz, Appl. Phys. Lett. 70, 2810, 1997.
[23] L. Shao, et al., “H-induced platelet and crack formation in hydrogenated epitaxial Si/Si0.98B0.02/Si structures,” Appl. Phys. Lett. 88, 021901, 2006.
[24] G. Dieter, Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986).
[25] H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook (Del Research Corp., Hellertown, PA, 1985).
[26] P. K. Chu, S. Qin, C. Chan, N. W. Cheung, P. K. Ko, “Instrumental and Process Considerations for the Fabrication of Silicon-on-Insulators (SOI) Structures by Plasma 68 Immersion Ion Implantation,” IEEE Tran. Plasma Sci., vol. 26, no. 1, pp. 79-84, 1998.
[27] P. K. Chu, X. Zeng, ” Hydrogen-induced surface blistering of sample chuck materials in hydrogen plasma immersion ion implantation” J. Vac. Sci. Technol., A 19(5), 2001.
[28] D. T. K. Kwok, Z. M. Zeng, P. K. Chu, T. E. Sheridan, ” Hybrid simulation of sheath and ion dynamics of plasma implantation into ring-shaped targets,” J. Phys. D: Appl. Phys. 34, pp.1091–1099, 2001. Section 2.3
[1] D. J. Paul, Thin Solid Film, 321, 172 (1998)
[2] F. Schaffler, Thin Solid Film, 321, 1 (1998)
[3] S. T. Pantelides, S. Zollner, Silicon-Germanium Carbon Alloy: Growth, Properties and Applications, (Taylor & Francis, 2002)
[4] T. A. Lando, M. T. Currie, et al., ”SiGe-free strained Si on insulator by wafer bonding and layer transfer,” Appl. Phys. Lett. 82(24), 4256 (2003)
[5] J. C. Hean, J. Cryst. Growth 81, 411 (1987)
[6] S. S. lyer, J. C. Tsang, W. Copel, P. R. Pukite, and R. M. Tromp, Appl. Phys. Lett. 54, 219 (1989)
[7] P. C. Zalm, G. F. A. van de Walle, D. J. Gravesteijn, and A. A. van Gorkum, Appl. Phys. Lett 55, 2520 (1989)
[8] J. H. Comfort, R. Reif, “Plasma-enhanced deposition of high-quality epitaxial silicon at low temperatures,” Appl. Phys. Lett. 51(24), 2701 (1987)
[9] S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, K. Takahashi, ”Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200°C,”Appl. Phys. Lett. 49(2), 79 (1986)
69
[10] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett. 48(12), 797 (1986)
[11] B. S. Meyerson, “Low-temperature Si and Si:Ge epitaxy by ultrahigh-vacuum/chemical vapor deposition: Process fundamentals,” IBM J. RES. DEVELO. 34(6), 806 (1990)
[12] G. L. Patton, J. H. komfort, Bl S. Meyerson, E. F. Crabbe, G. L. Scilla, E. DeFresart, J. M. C. Stork, J. Y.-C. Sun, D. L. Harame, and J. N. Burghartz, IEEE Electron Device Lett. 11, 171 ( 1990)
[13] Hong Xiao, Introduction to Semiconductor Manufacturing Technology (Pearson, Prentice Hall)
[14] Guozhong Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, (Imperial College Press, 2004)
[15] S. C. Jain, Germanium-Silicon Strained Layers and Heterostructures, Advances in Electronics and Electron Physics series, (Supplement 24), Editor-in-chief of the series: Peter W. Hawkes, (Academic Press, Boston 1994)
[16] S. C. Jain, M. Willander, Silicon-Germanium Strained Layers and Heterostructures, Semiconductors and Semimetals volume 74, Treatise Editors: Robert K. Willardson, Eicke R. Weber, (Academic Press, Boston 2003)
[17] J. Y. Tsao, B. W. Dodson, S. T. Picraux, D. M. Cornelison, ”Critical Stress for SixGe1-x Strained-Layer Plasticity,” Phys. Rev. Lett., 59(21), 2455 (1987)
[18] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, I. K. Robinson, J. Vac. Sci. Technol. A, 2, 436 (1984)
[19] E. Kasper, H. J. Herzog, H. Kibbel, Appl. Phys., 8, 199 (1975)
[20] M. L. Green, B. E. Weir, D. Brasen, Y. F. Hsieh, G. Higashi, A. Feygenson, L. C. Feldman, and R. L. Headrick, J. Appl. Phys., 69, 745 (1991)
[21] D. C. Houghton, J. Appl. Phys., 70(4), 15 (1991) 70
[22] J. Singh, Electronic and optoelectronic properties of semiconductor structures, (Cambridge University Press, New York, 2003)
[23] E. A. Fitzgerald, Y.-H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y.-J Mii, and B. E. Weir, ”Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates,” Appl. Phys. Lett. 59(7), 811 (1991)
[24] D. B. Noble, J. L. Hoyt, J. F. Gibbons, M. P. Scott, S. S. Laderman, S. J. Rosner, T. I. Kamins, “Thermal stability of Si/Si1-xGex/Si heterojunction bipolar transistor structures grown by limited reaction processing,” Appl. Phys. Lett. 55(19), 1978 (1989)
[25] R. Hull, J. C. Bean, Germanium Silicon: Physics and Materials, Semiconductors and Semimetals volume 56, Treatise Editors: Robert K. Willardson, Eicke R. Weber, (Academic Press, Boston 1999)
Section 2.4
[1] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou, “Deactivation of the boron acceptor in silicon by hydrogen” Appl. Phys. Lett. 43, p.204 (1983).
[2] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou and S. C.-S. Pan, ”Deactivation of Group III acceptors in silicon during keV electron irradiation” Appl. Phys. Lett. 43, p.962 (1983).
[3] J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser and R. O. Wance, ” Neutralization of shallow acceptor levels in Silicon by atomic hydrogen”, Phys. Rev. Lett. 51, p.2224 (1983).
[4] J. I. Pankove, R. O. Wance and J. E. Berkeyheiser, ” Neutralization of acceptors in Silicon by atomic hydrogen”, Appl. Phys. Lett. 45, p.1100 (1984). 71
[5] A. J. Tavendale, D. Alexiev and A. A. Williams, ” Field drift of the hydrogen-related, acceptor-neutralizing defect in diodes from hydrogenated silicon”, Appl. Phys. Lett. 47, p.316 (1985).
[6] C. G. Van de Walle, Y. Bar-Yam and S. T. Pantelides, ” Theory of Hydrogen Diffusion and Reactions in Crystalline Silicon”, Phys. Rev. Lett. 60, p.2761 (1988).
[7] S. T. Pantelides, ”Effect of hydrogen on shallow dopants in crystalline silicon”, Appl. Phys. Lett. 50, p.995 (1987).
[8] J. I. Pankove, “Temperature dependence of boron neutralization in silicon by atomic hydrogen”, J. Appl. Phys. 68, p.6532 (1990).
[9] J. T. Borenstein, J. W. Corbett and S. J. Pearton, ”Kinetic model for hydrogen reaction in boron-doped silicon”, J. Appl. Phys. 73, p.2751 (1993).
[10] A. D. Marwick, G. S. Oehrlein and M. Wittmer, “High hydrogen concentrations produced by segregation into p+ layers in silicon”, Appl. Phys. Lett. 59, p.198 (1991).
[11] C. P. Herrero and M. Stutzmann, “Microscopic structure of boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38, p.12668 (1988).
[12] L. Korpás, J. W. Corbett and S. K. Estreicher, “Multiple trapping of hydrogen at boron and phosphorus in silicon”, Phys. Rev. B 46, p.12365 (1992).
[13] J. C. Noya, C. P. Herrero and R. Ramírez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B 56, p.15139 (1997).
[14] N. M. Johnson, “Mechanism for hydrogen compensation of shallow-acceptor impurities in single-crystal silicon”, Phys. Rev. B 31, p.5525 (1985).
[15] B. L. Sopori, Y. Zhang and R. Reedy, “H Diffusion for Impurity and Defect Passivation: A Physical Model for Solar Cell Processing”, Procd. 29th IEEE PVSC, p.222 (2002).
[16] Y.-H. Xie, H. S. Luftman, J. Lopata, J. C. Bean, “Hydrogenation of molecular beam epitaxial Ge0.36Si0.64 on Si”, Appl. Phys. Lett. 55, p.684 (1989). 72
[17] Y. Zhang, “Modeling Hydrogen Diffusion for Solar Cell Passivation and Process Optimization”, New Jersey Institute of Technology, Ph. D. Dissertation (2002)
指導教授 李天錫(Tien-His Lee) 審核日期 2008-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明