博碩士論文 86341001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.12.73.64
姓名 何澤民(Tze-Min Her)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以締合結晶法分離間氯酚與對氯酚之沸點相近混合物
(Separating Close-Boiling Mixtures of m-Chlorophenol and p-Chlorophenol by Adductive Crystallization)
相關論文
★ 高速旋轉填充床應用於分離異丙醇-水共沸混合物之研究★ 水-醋酸-對位二甲苯-乙酸甲酯-乙酸異丁酯之汽液平衡
★ 進料不純物作為系統內自體共沸劑模擬回收醋酸之醋酸脫水程序及其效益分析★ 單電解水溶液離子活性係數與溫度之關係
★ 在超臨界CO2之溶解度量測及Poynting factor之探討★ 矽酸乙酯與乙醇在不同壓力之相平衡
★ 水-酚-對甲酚-鄰甲酚四成份系統之液液相平衡研究★ 單電解質水溶液離子活性係數之探討
★ 高速旋轉填充床於分離共沸混合物之研究★ 乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
★ 間氯酚與對氯酚之固液相平衡研究★ 高速旋轉填充床於分離乙醇-水共沸混合物之研究
★ 二價單電解質水溶液之個別離子活性係數 量測與關聯★ 雙參數個別離子活性係數模式應用於雙電解質水溶液蒸汽壓之估算
★ β-胡蘿蔔素-二丁基羥基甲苯於超臨界二氧化碳之溶解度量測與關聯★ 共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究嘗試以固體消失法,有系統地量測兩個三成分系統及五個二成分系統之熔點,建立固液平衡相圖。並嘗試使用苯胺與第三丁醇為締合劑,以締合結晶法將沸點相近之間氯酚 (沸點489.2 K) 與對氯酚 (沸點490.2 K) 之共熔混合物完全分離。
量測結果顯示,間氯酚與對氯酚之二成分系統具有一個共熔點。這顯示以結晶法無法完全分離間氯酚與對氯酚之混合物。
苯胺+間氯酚與苯胺+對氯酚之二成分系統具有兩個共熔點及一個合熔點。而且合熔點均於苯胺之莫耳分率為0.5時發生,可見合熔物之型式應為AB或AC (A代表苯胺;B代表間氯酚;C代表對氯酚)。
第三丁醇+間氯酚與第三丁醇+對氯酚之二成分系統具有兩個共熔點及一個合熔點。而且合熔點均於第三丁醇之莫耳分率為0.67時發生,可見合熔物之型式應為A2B或A2C (A代表第三丁醇;B代表間氯酚;C代表對氯酚)。
苯胺+間氯酚+對氯酚之三成分系統具有兩個共熔點及一個合熔點。而且合熔點均於苯胺之莫耳分率為0.5時發生,可見合熔物應為AB與AC之混合物。根據此三成分系統之固液平衡數據,使用苯胺為締合劑,我們可以利用締合結晶法,設計兩種分離程序,將間氯酚與對氯酚之共熔混合物完全分離。
第三丁醇+間氯酚+對氯酚之三成分系統具有兩個共熔點及一個合熔點。而且合熔點均於第三丁醇之莫耳分率為0.67時發生,可見合熔物應為A2B與A2C之混合物。根據此三成分系統之固液平衡數據,使用第三丁醇為締合劑,我們可以利用締合結晶法,設計一種分離程序,將間氯酚與對氯酚之共熔混合物完全分離。
所有實驗數據均可用Ott and Goates 經驗式迴歸。迴歸結果顯示,熔點計算值與實驗值間之平均絕對誤差,大部份在0.3 K以內,少數介於0.3至0.9 K之間。由此觀之,Ott and Goates 經驗式足以作為數據內插之用。
摘要(英) In this study, the solid-liquid equilibrium (SLE) data of two ternary systems and their constituent binary systems, aniline + m-chlorophenol + p-chlorophenol; and tert-butanol + m-chlorophenol + p-chlorophenol, were experimentally investigated by means of solid-disappearance method. We also try to use aniline and tert-butanol as adductive agent to separate the eutectic and close-boiling mixture of m-chlorophenol (b.p. 489.2 K) and p-chlorophenol (b.p. 490.2 K).
The binary system m-chlorophenol + p-chlorophenol was observed to exhibit one eutectic point. This means that completely separating m-chlorophenol from p-chlorophenol by simple crystallization is absolutely impossible.
While each of the binary pairs of aniline + m-chlorophenol and aniline + p-chlorophenol exhibits two eutectic points and one congruent point at aniline mole fraction of 0.5, i.e. a congruent complex in formula AB or AC is formed during freezing (A stands for aniline; B stands for m-chlorophenol; C stands for p-chlorophenol).
However the tert-butanol + m-chlorophenol and tert-butanol + p-chlorophenol mixtures behave slightly differently, each exhibiting two eutectic points and one congruent point near tert-butanol mole fraction of 0.67. This suggests that a congruent complex in formula A2B or A2C is formed during freezing (A stands for tert-butanol; B stands for m-chlorophenol; C stands for p-chlorophenol).
As for the ternary mixtures of aniline + m-chlorophenol + p-chlorophenol with designated mole ratios of m-chlorophenol to p-chlorophenol (pseudo binary systems), they all possess two eutectic points and one congruent point at aniline mole fraction of 0.5. It implies that the mixtures of congruent complexes of AB and AC are formed during freezing. Based on the information presented in the ternary phase diagram and using aniline as an adductive agent, two conceptually feasible processes of separating the eutectic mixture of m-chlorophenol + p-chlorophenol are proposed.
Another systematic pseudo binary systems of tert-butanol + m-chlorophenol + p-chlorophenol were investigated too. They all exhibit two eutectic points and one congruent point near tert-butanol mole fraction of 0.67. It suggests that the mixtures of congruent complexes of A2B and A2C are formed during freezing. Based on the information presented in the ternary phase diagram and using tert-butanol as an adductive agent, one conceptually feasible process of separating the eutectic mixture of m-chlorophenol + p-chlorophenol can be developed.
The Ott and Goates’ equation can be used to fit all the experimental data. Most of the AAD’s are less than 0.3 K, except very few AAD’s that lie between 0.3 K and 0.9 K. Generally speaking, the Ott and Goates’ equation is quite satisfactory for interpolation purposes.
關鍵字(中) 關鍵字(英) ★ chlorophenol
★ adductive
論文目次 摘 要 I
Abstract II
Contents IV
List of Tables VII
List of Figures VIII
List of Symbols X 
CHAPTER 1 INTRODUCTION 1
1-1 Extractive distillation and homogeneous azeotropic distillation. 3
1-2 Heterogeneous azeotropic distillation 5
1-3 Reactive distillation 7
1-4 Multi-pressure distillation 8
1-5 Distillation using ionic salts 8
1-6 Adsorptive separations. 10
1-7 Zeolite membrane-based separation 11
1-8 Pervaporation (PV). 12
1-9 Chromatographic separations 14
1-10 Electroosmotic separations 15
1-11 Adductive crystallization 16
CHAPTER 2 THE INDUSTRIAL METHODS OF PRODUCIG AND SEPARATING CLOSE-BOILING CHLOROPHENOLS 19
2-1 Process for separating chlorinated phenols 20
2-2 Processes for making m-chlorophenol 21
2-2-1 Making m-chlorophenol from m-dichlorobenzene 21
2-2-2 Making m-chlorophenol from aromatic carboxylic acid 24
2-3 Processes for making p-chlorophenol 25
2-3-1 Making p-chlorophenol from aniline .25
2-3-2 Making p-chlorophenol by selective reduction of chlorobromophenol…………………………………….. 26
CHAPTER 3 USING ANILINE AS AN ADDUCTIVE AGENT TO SEPARATE THE CLOSE-BOILING MIXTURES OF M-CHLOROPHENOL AND P-CHLOROPHENOL 27
3-1 Introduction 27
3-2 The Reasons Why We Choose Aniline as an Adductive Agent 27
3-3 The Objectives of This Study 29
3-4 Experimental Work 30
3-4-1 Chemicals 30
3-4-2 Apparatus 31
3-4-3 Sample preparation 31
3-4-4 Solid-disappearance observations 32
3-4-5 Observations of eutectic and congruent points 33
3-5 Experimental results 36
3-5-1 Binary systems 36
3-5-2 Ternary System 44
3-6 Separation processes developed from the ternary phase diagram 53
3-6-1 Crystallization process to separate p-chlorophenol rich mixtures. 53
3-6-2 Crystallization process to separate m-chlorophenol rich mixtures. 55
3-6-3 Adductive crystallization process 1 to separate the eutectic mixture of m-chlorophenol and p-chlorophenol 57
3-6-4 Adductive crystallization process 2 to separate the eutectic mixture of m-chlorophenol and p-chlorophenol 61
3-6-5 Conclusion on successful adductive crystallization 62
3-7 Empirical fitting of experimental data 64
3-8 Conclusion 68
CHAPTER 4 USING TERT-BUTANOL AS AN ADDUCTIVE AGENT TO SEPARATE THE CLOSE-BOILING MIXTURES OF M-CHLOROPHENOL AND P-CHLOROPHENOL 69
4-1 Introduction 69
4-2 Experimental Work 69
4-2-1 Chemicals 69
4-2-2 Apparatus 70
4-2-3 Sample preparation 70
4-3 Experimental results 73
4-3-1 Binary systems. 73
4-3-2 Ternary system 81
4-4 Separation processes developed from the ternary phase diagram 90
4-4-1 Crystallization process to separate p-chlorophenol
rich mixtures 90
4-4-2 Crystallization process to separate m-chlorophenol
rich mixtures 92
4-4-3 Adductive crystallization to separate the eutectic mixture 94
4-4-4 Alternative consideration 98
4-4-5 Conclusions on successful adductive crystallization 99
4-5 Empirical fitting of experimental data 100
4-6 Conclusion 104
CHAPTER 5 CONCLUSIONS AND FUTURE PROSPECTS 105
5-1 Conclusions 105
5-2 Future Prospects 106
REFERENCES. 107
參考文獻 Anasthas, H. M.; Gaikar, V. G., Adsorptive separation of alkylphenols using ion-exchange resins, React. Funct. Polym., 1999, 39, 227-237.
Barnard, R. D.; Creek, W.; Meyer, R. H., The Dow Chemical Company, Productions of phenols from aromatic carboxylic acids, US Patent 2,852,567 (1958).
Benedict, M.; Rubin, L.C., Extractive and azeotropic distillation I. Theoretical aspects, Trans. AIChE, 1945, 41, 353–370.
Bennett, H., Concise Chemical and Technical Dictionary, Chemical Publishing Co., Inc., New York, 1974.
Bernot, C.; Doherty, M. F.; Malone, M. F., Feasibility and separation sequencing in multicomponent batch distillation, Chem. Eng. Sci. 1991, 46 (5–6), 1311–1326.
Bhatt, A.A.; Pangarkar, V.G., Methanol-selective membranes for the pervaporation separation of methanol–toluene mixtures, J. Membr. Sci., 2000, 167 (2), 187–201.
Biegler, L. T.; Grossmann, E. I.; Arthur W. W., Systematic Methods of Chemical Process Design [Separating Azeotropic Mixture], 1997, Prentice Hall.
Binning, R.C., Separation of mixtures, US Patent 2,981,680, 1961.
Binning, R.C.; James, F.E., How to separate by membrane permeation, Petrol. Refiner, 1958, 37 (I5), 214–215.
Binning, R.C.; James, F.E., Permeation: a new commercial separation tool, Refiner Eng. 1958, 30, 6.
Britton, E.C.; Keil, T. R., The Dow Chemical Company, Selective reduction of chlorobromophenols, US Patent 2,725,402 (1955).
Budavari, S., The Merck Index., 12th ed. 2003.
Chitnis, S. R.; Sharma, M. M., Alkylation of aniline with
指導教授 李亮三(Liang-Sun Lee) 審核日期 2005-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明