博碩士論文 90324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:3.141.47.82
姓名 劉安振(An-Chen Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用恆溫滴定微卡計於核酸分子雜交反應之熱力學與機制的研究
(Studies of Thermodynamics and Mechanism of DNA Hybridization by Isothermal Titration Calorimetry)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中 文 摘 要
DNA分子雜交反應基本上包含氫鍵作用力、鹼基間堆疊作用力與水合去水合作用。在單股DNA分子主幹上帶負電的磷酸根對DNA分子雜交反應有相當程度的影響,故親疏水作用力及靜電作用力在DNA分子雜交反應上皆扮演著重要角色。在雜交反應過程中兩互補之單股DNA分子在進行雜交前,在單股DNA分子周圍先有一去水合步驟發生,且此步驟可能伴隨著單股DNA分子的結構轉變,由unstructured single strand state轉變到helical(stacked) single strand state,再藉由氫鍵產生與鹼基對堆疊作用形成雙螺旋結構,最後在雙螺旋DNA分子外圍之水合作用主要作用在穩定雙螺旋結構。在整個雜交反應中,單股DNA分子的結構轉變、氫鍵之形成、鹼基對間之堆疊作用與水合作用等均為放熱反應;而去水合步驟則為吸熱反應。各個作用均會對不同DNA雜交條件,如DNA分子長度、雜交反應之環境溫度及鹽濃度等之雜交反應熱造成不同程度的貢獻。
本實驗利用恆溫滴定微卡計(ITC)量測DNA分子在不同溫度、不同DNA分子長度、不同GC%及不同鹽濃度溶液下之雜交交互作用的雜交反應熱(△H,hybridization enthalpy),藉此可得知DNA分子間交互作用力的大小及溫度鹽濃度等實驗條件對各個作用力的影響,然後再進一步探討雜交反應之反應機制。並期望從雜交熱力學中推導出雜交反應之可能機制與熱力學經驗關係式,以提供DNA生物晶片反應較佳之條件。並檢討可否利用DNA雜交熱力學之量測以偵測SNP(Single Nucleotide Polymorphism)問題之可能性!
文獻中的實驗大都利用微分掃描卡計及紫外線光譜儀掃描一溫度範圍(大都在283K~383K)來測量雜交反應熱,其結果均為放熱;而本研究之恆溫滴定微卡計的實驗均在一恆溫條件下進行,實驗結果大多為吸熱反應,造成此不同之實驗結果可能是由於文獻中之實驗溫度不斷改變可能造成DNA分子之結構改變,此由heat capacity的改變即可證明,說明了單股DNA分子之結構於不同溫度下之改變及去水合作用影響之重要性。另外造成不同實驗結果原因可能在於使用的緩衝溶液不同。在DNA分子雜交過程中若只簡單地視為去水合(dehyhration)及雜交(hybridization)兩大步驟,而由能量觀點來說明,去水合步驟牽涉到水分子的亂度改變,為吸熱反應;雜交步驟主要為氫鍵的鍵結,為放熱反應,但另外鹼基堆疊作用則主要為entropy之貢獻為主。本研究之結果應可推測去水合步驟對雜交反應有決定性的影響,此結果可提供DNA晶片業者於雜交反應之環境條件上之理論基礎。此外,本實驗也對DNA分子長度、溶液鹽濃度、實驗溫度與GC%對雜交反應熱會造成不同程度的貢獻做討論。
摘要(英) Abstract
DNA hybridization reaction includes ssDNA structural arrangement hydrogen bond interaction, stacking interaction between base pairs, hydration step and dehydration step. The DNA hybridization reaction is mainly affected by the negatively changed phosphate group in DNA backbone. Hydrophobic interaction between the base pairs intermolecule and intramolecule of ssDNA and electrostatic interaction play important roles in DNA hybridization reaction. Specifically, before DNA hybridization, single strand DNA molecules proceeded conformational transform from unstructured single state to helical single strand state and dehydration step. Then, double helical structure was form due to hydrogen bond interaction, stacking interaction between base pairs and hydration step. Conformational transform of single strand DNA, hydrogen bond, stacking between base pairs and hydration step are exothermic and dehydration step is endothermic, basically. Therefore, DNA hybridization enthalpy is affected to different extent by the above mentioned steps.
In this study, we measured the DNA hybridization enthalpy by isothermal titration calorimetry at different temperature, DNA length, GC% and salt concentration to understand DNA molecules interaction and effects of different experiment conditions and to discuss the DNA hybridization mechanism. An experimental equation of hybridization enthalpy as function of the reaction parameters was proposed in our study.
Our results demonstrated that the hybridization enthalpy is exothermic. The dehydration step plays a profound role in DNA hybridization process. It also provided theoretical basis that to select hybridization conditions for application of biochip. Furthermore we indicated the difference of hybridization enthalpy in various DNA length and between perfect match and mismatch can be differentiated in a proper reaction condition. Therefore, we may possibly detect the SNP problem by isothermal titration calorimetry measurement.
關鍵字(中) ★ 恆溫滴定微卡計
★ 核酸
關鍵字(英) ★ isothermal titration calorimetry
★ DNA hybridization
論文目次 目 錄
中文摘要.....................................................................................................I
Abstract.....................................................................................................III
目錄..........................................................................................................IV
圖目錄.....................................................................................................VII
表目錄......................................................................................................XI
第一章 緒論(introduction)......................................................................1
第二章 實驗原理與文獻回顧................................................................3
2.1 核酸介紹...........................................................................................3
2.1.1 核酸之研究歷史....................................................................3
2.1.2 去氧核醣核酸在遺傳上的作用............................................7
2.1.3 聚核苷酸的共價結構............................................................8
2.1.4 去氧核醣核酸(DNA)的結構...............................................13
2.1.5 去氧核醣核酸(DNA)的變性...............................................20
2.2 去氧核醣核酸分子的水合、去水合作用與雜交反應...................24
2.3 單一核酸多型性(single nucleotide polymorphism).......................29
2.4 恆溫滴定微卡計.............................................................................32
2.4.1 卡計之基本介紹..................................................................32
2.4.2 微分熱掃描卡計與恆溫滴定微卡計之差異......................32
2.4.3 恆溫滴定微卡計之基本介紹..............................................33
2.5 卡計與紫外線光譜儀於DNA雜交反應之研究...........................38
第三章 實驗藥品與步驟......................................................................41
3.1 實驗藥品.........................................................................................41
3.2 實驗儀器設備.................................................................................43
3.3 實驗步驟.........................................................................................43
3.3.1 溶液配製..............................................................................43
3.3.1.1 SSC緩衝溶液................................................................43
3.3.1.2 SDS溶液.......................................................................44
3.3.1.3 互補之單股DNA溶液.................................................44
3.3.2 恆溫滴定微卡計之操作步驟..............................................44
3.4 實驗量測.........................................................................................46
3.4.1 雜交反應熱實驗..................................................................46
3.4.2 單股DNA分子稀釋熱實驗................................................47
3.4.2.1 Single Target(ST) DNA分子稀釋熱實驗....................47
3.4.2.2 Single Probe(SP) DNA分子稀釋熱實驗.....................47
第四章 結果與討論..............................................................................48
4.1 改變不同鹽濃度與溫度實驗.........................................................48
4.2 改變不同GC %實驗.......................................................................63
4.3 改變不同DNA分子長度實驗.......................................................67
4.4 One-mismatch及Two-mismatch實驗............................................74
4.5 熱力學經驗式推導.........................................................................79
第五章 結論與建議..............................................................................85
5.1 結論.................................................................................................85
5.2 建議.................................................................................................86
第六章 參考文獻..................................................................................87
附錄..........................................................................................................94
參考文獻 參考文獻
1.Breslauer, K. J., Frank, R., Blocher, H., and Marky, L. A., “Predicting DNA Duplex Stability from the Base Sequence” Biochemistry 83 (1986) 3746-3750.
2.方瓊儀, “利用微卡計對於蛋白質與離子交換樹指觸手間親疏水作用力的影響”, 碩士論文, 國立中央大學化學工程研究所, 2002.
3. Lin, R. Y. and Chen, W. Y., “The biological membrane applications of isothermal titration calorimetry”, J. Chin. Colloid Interface Soc. 18 (1995) 119-128.
4. Plum, G. E. and Breslauer, K. J., “Calorimetry of Proteins and Nucleic Acids”, Current Opinion in Structural Biology 5 (1995) 682-690.
5.Schwarz, F. P., Robinson, S., and Butler, J. M., “Thermodynamic Comparison of PNA/DNA and DNA/DNA Hybridization Reactions at Ambient Temperature”, Nucleic Acids Research 27 (1999) 4792-4800.
6. Alcamo, I. E., DNA Technology, 2th edition, 偉明圖書, 2001.
7. Campbell, M. K., Biochemistry, 3th edition, 偉明圖書, 1999.
8. Watson, J. D. and Crick, F. H. C., “Molecular Structure of Nucleic Acids”, Nature, 1953.
9.侯明宏, ”多胺類對多腺嘌呤:胸腺啶鹼基配對核酸雙螺旋之作用- 熱力學及動力學之研究”, 碩士論文, 國立中興大學生物化學研究所, 1998.
10.Bond, J. P., Anderson, C. F. and Record, M. T., Jr., “Conformational Transitions of Duplex and Triplex Nucleic Acid Helices : Thermodynamic Analysis of Effects of Salt Concentration on Stability Using Preferential Interaction Coefficients”, Biophysical Journal 67 (1994) 825-836.
11.Privalov, P. L., Ptitsyn, O. B. and Birshtein, T. M., “Determination of Stability of the DNA Double Helix in an Aqueous Medium”, Biopolymers 8 (1969) 559-571.
12.Marky, L. A., Patel, D., and Breslauer, K. J., “Effect of Tetramethylammonium Ion on the Helix-to-Coil Transition of Poly(deoxyadenylylthymidine) : A Nuclear Magnetic Resonance and Calorimetric Investigation”, Biochemistry 20 (1981) 1427-1431.
13.Peterlinz, K. A. and Georgiadis, R. M., “Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy”, J. Am. Chem. Soc. 119 (1997) 3401-3402.
14.Turner, D. H., Sugimoto, N., Freier, S. M., “RNA Structure prediction” Ann. Rev. Biophys. Biophys. Chem. 17 (1988) 167-192.
15.Saenger, W. In Principles of Nucleic Acid Structure, Kantor, G. R., Ed., Springer-Verlag, New York, 1984.
16.Tanford, C., “Protein Denaturation”, Adv. Protein Chem. 23 (1968) 121-282.
17.Kuntz, I. D., Jr., and Kauzmann, W., “Hydration of Proteins and Polypeptides”, Adv. Protein Chem. 28 (1974) 239-345.
18.Finney, J. L., Goodfellow, J. M., and Poole, P. L., Structural Molecular Biology, Methods and Applications, Plenum, New York, 1982.
19.Edelhoch, H., and Dickerson, R. E., Jr., “The Thermodynamic Basis of the Stability of Proteins, Nucleic Acids, and Membranes”, Adv. Protein Chem. 30 (1976) 183-250.
20.Hopfinger, A. J. In Intermolecular Interactions and Biomolecular Organization, Wiley, New York, 1977.
21.Berman, H. M., “Hydration of DNA”, Curr. Opin. Struct. Biol. 1 (1991) 423-427.
22.Garcia, A. E., Hummer, G., Soumpasis, D. M., Neutrons in Biology, Schoenborn, B. P., Knott, R., Eds., Plenum Press, New York, 1996.
23.Kubinec, M. G., Wemmer, D. E., “NMR Evidence for DNA Bound Water in Solution”, J. Am. Chem. Soc. 114 (1992) 8739-8740.
24.Shui, X., McFail-Isom, L., Hu, G. G., Williams, L. D., “The B-DNA Dodecamer at High Resolution Reveals a Spine of Water on Sodium” Biochemistry 37 (1998) 8341-8355.
25.Alexeev, D. G., Lipanov, A. A., Skuratovskii, I., “Poly(da).Poly(Dt) Is a B-Type Double Helix with a Distinctively Narrow Minor Groove”, Nature 325 (1978) 821-823.
26.Saenger, W., Hunter, W. N., Kennard, O., “DNA Conformation Is Determined by Economics in the Hydration of Phosphate Groups” Nature 324 (1986) 385-388.
27.Kauzman, W., “Some Factors in the Interpretation of Protein Denaturation”, Adv. Protein Chem. 14 (1959) 1-63.
28.Richmond, T. J., “Solvent Accessible Surface Area and Excluded Volume in Proteins”, J. Mol. Biol. 178 (1984) 63-89
29.Spink, C. H., and Chaires, J. B., “Effect of Hydration, Ion Release,
and Excluded Volume on the Melting of Triplex and Duplex DNA”, Biochemistry 38 (1999) 496-508.
30.Rentzeperis, D., Kupke, D. W., Marky, L. A., “Volume Changes Correlate with Entropies and Enthalpies in the Formation of Nucleic-Acid Homoduplexes - Differential Hydration of A-Conformation and B-Conformation” Biopolymers 33 (1993) 117-125.
31.Macgregor, R. B., Jr., Chen, M. Y., “Delta-Vbaro of the Na+-Induced B-Z Transition of Poly(D(G-C)) Is Positive”, Biopolymers 29 (1990) 1069-1076.
32.Umehara, T., Kuwabara, S., Mashimo, S., Yagihara, S., “Dielectric Study on Hydration of B-DNA, A-DNA, and Z-DNA”, Biopolymers 29 (1990) 649-656.
33.Preisler, R. S., Chen, H. H., Colombo, M. F., Choe, Y., Short, B. J., Jr., Rau, D. C., “The B-Form to Z-Form Transition of Poly(DG-M(5)DC) Is Sensitive to Neutral Solutes Through an Osmotic-Stress”, Biochemistry 34 (1995) 14400-14407.
34.Rentzeperis, D., Kupke, D. W., Marky, L. A., “Differential Hydration of da-Center-Dot-Dt Base-Pairs in Parallel-Stranded DNA Relative to Antiparallel DNA”, Biochemistry 33 (1994) 9588-9591.
35.Kankia, B. I., Kupke, D. W., and Marky, L. A., “The Incorporation of a Platinated Cross-Link into Duplex DNA Yields an Uptake of Structural Water”, J. Am. Chem. B. 105 (2001) 11402-11405.
36.Lin, F. Y., Chen, W. Y., Hearn, M. T. W., “Microcalorimetric Studies on the Interaction Mechanism Between Proteins and Hydrophobic Solid Surfaces in Hydrophobic Interaction Chromatography : Effects of Salts, Hydrophobicity of the Sorbent, and Structure of the Protein” Anal.Chem. 73 (2001) 3875.
37.Nordmeier, E., “Effects of Pressure on the Helix-Coil Transition of Calf Thymus DNA”, J. Phys. Chem. 96 (1992) 1494-1501.
38.Spolar, R. S., Ha, J. H., and Record, M. T., Jr., “Hydrophobic Effect in Protein Folding and Other Noncovalent Processes Involving Proteins”, Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 8382-8385.
39.Spolar, R. S., Livingstone, J. R., and Record, M. T., Jr., “Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water”, Biochemistry 31 (1992) 3947-3955.
40.Murphy, K. P., and Freire, E., “Thermodynamics of Structureal Stability and Cooperative Folding Behavior in Proteins”, Adv. Protein Chem. 43 (1992) 313-361.
41.Privalov, P. L., and Makhatadze, G. I., “Contribution of Hydration and Noncovalent Interactions to the Heat-Capacity Effect on Protein Unfolding”, J. Mol. Biol. 224 (1992) 715-723.
42.Vesnaver, G., and Breslauer, K. J., “The Contribution of DNA Single-Stranded Order to the Thermodynamics of Duplex Formation”, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 3569-3573.
43.Filimonov, V., and Privalov, P. L., “Thermodynamics of Base Interaction in (A)n and (AU)n”, J. Mol. Biol. 122 (1978) 465-470.
44.Ferrari, M. E., and Lohman, T. M., “Apparent Heat Capacity Change Accompanying a Nonspecific Protein-DNA Interaction. Escherichia coli SSB Tetramer Binding to Oligodeoxyadenylates”, Biochemistry 33 (1994) 12896-12910.
45.Freier, S. M., Sugimoto, N., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R., Caruthers, M. H., and Turner, D. H., “Stability of XGCGCp, GCGCYp, and XGCGCYp helixes: an empirical estimate of the energetics of hydrogen bonds in nucleic acids”, Biochemistry 25 (1986) 3214-3219.
46.Florian, J., Sponer, J., and Warshel, A., “Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution: Ab Initio/Langevin Dipoles Study”, J. Phys. Chem. B 103 (1999) 884-892.
47.Soto, A. M., Kankia, B. I., Dande, P., Gold B., and Marky, L. A., “Thermodynamic and Hydration Effects for the Incorporation of a Cationic 3-Aminipropyl Chain into DNA”, Nucleic Acids Research 30 (2002) 3171-3180.
48.Leal, C., Wadso, L., Olofsson, G., Miguel, M., and Wennerstrom, H., “DNA and DNA-Surfactant Hydration”, 2002.
49.Wu, M., McDowell, J. A. and Turner, D. H., “A Periodic Table of Symmetric Tandem Mismatches in RNA”, Biochemistry 34 (1995) 3204-3211.
50.Wilson, W. D., Hoa DTM, Zuo, E. T.,and Zon, G., “Unisual Duplex Formation in Purine Rich Oligodeoxyribonucleotides”, Nucleic Acids Res. 16 (1988) 5137-5151.
51.SantaLucia, J. , Jr., Kierzek, R., Turner, D. H., “Effects of GA mismatches on the structure and thermodynamics of RNA internal loops”, Biochemistry 29 (1990) 8813-8819.
52.Petruska J., Goodman M. F., “Enthalpy Entropy Compensation
in DNA Melting Thermodynamics”, J Biol. Chem. 270 (1995) 746-750.
53.Searle, M. S., Williams, D. H., “On The Stability of Nucleic Acid Structures in Solution: Enthalpy-Entropy Compensations, Internal Rotations and Reversibility”, Nucleic Acids Res. 21 (1993) 2051-2056.
54.陳慶松, “微卡計在固液吸附機制之研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制”, 碩士論文, 國立中央大學化學工程研究所, 2000.
55.Freire, E., Mayorga, O. L., Straume, M., “Isothermal Titration Calorimetry”, Anal. Chem. 62 (1990) 950A-959A.
56.Wisemen, T, Williston, S., Brandts, J. F., and Lin, L. N., “Rapid Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter”, Anal. Biochem. 179 (1989) 131-137.
57.Ramsay, G., Prabhu, R., and Freire, E., “Direct Measurement of the Energetics of Association between Myelin Basic Protein and Phosphatidylserine Vesicles”, Biochemistry 25 (1986) 2265-2270.
58.Backman, P., Bastos, M., Briggner, L. E., Hagg, S., Hallen, D., Lonnro, P., Nilsson, S. O., Olofsson, G., Schon, A., Suukuusk, J., Teixeira, C., and Wadso, I., “A System of Microcalorimeters”, Pure Appl. Chem. 66 (1994) 375-382.
59.Lesnik, E. A., and Freier, S., ”Relative Thermodynamic Stability of DNA, RNA, and DNA:RNA Hybrid Duplexes: Relationship with Base Composition and Structure”, Biochemistry 34 (1995) 10807-10815.
60.Privalov, P. L.,and Ptitsyn, O. B., “Determination of Stability of the DNA Double Helix in An Aqueous Medium”, Biopolymers 8 (1969) 559-571.
61.Wu, P., Nakano, S. I., and Sugimoto, N., “Temperature Dependence of Thermodynamic Properties for DNA/DNA and RNA/DNA Duplex Formation”, Eur. J. Biochem. 269 (2002) 2821-2830.
62.Ponnuswamy, P. K., and Gromiha, M. M., “On the Conformational Stability of Oligonucleotide Duplexes and tRNA Molecules”, J. Theor. Biol. 169 (1994) 419-432.
63.Chatterjee A., Moulik S. P., Majhi P. R., Sanyal S. K., “Studies on surfactant–biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammoniumbromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin(Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA)”, Biophysical Chemistry 98 (2002) 313-327.
64.Lane, A. N., and Jenkins, T. C., “Thermodynamics of Nucleic Acids and Their Interactions with Ligands”, Quarterly Reviews of Biophysics 33 (2000) 255-306.
65.Amutha, R., Subramanian, V., and Nair, B. U., “Free Energy Calculation for DNA Bases in Various Solvents Using Flory-Huggins Theory”, Chemical Physics Letters 335 (2001) 489-495.
66.Mrevlishvili, G. M., “Low-Temperature Heat Capacity of Biomacromolecules and the Entropic Cost of Bound Water in Proteins and Nucleic Acids (DNA)”, Thermochimica Acta 308 (1998) 49-54.
67.Holbrook, J. A., Capp, M. W., Saecker, R. M. and Record, M. T., Jr., “Enthalpy and Heat Capacity Changes for Formation of an Oligomeric DNA Duplex: Interpretation in Terms of Coupled Processes of Formation and Association of Single-Stranded Helices”, Biochemistry 38 (1999) 8409-8422.
68.Wu, P., Nakano, S. I., and Sugimoto, N., “Temperature Dependence of Thermodynamic Properties for DNA/DNA and RNA/DNA Duplex Formation”, Eur. J. Biochem. 269 (2002) 2821-2830.
69.Bond, J. P., Anderson, C. F., and Record, M. T., Jr., “Conformational Transitions of Duplex and Triplex Nucleic Acid Helices: Thermodynamic Analysis of Effects of Salt Concentration on Stability Using Preferential Interaction Coefficients”, Biophysical Journal 67 (1994) 825-836.
70.Zieba, K., Chu, T. M., Kupke, D.W., and Marky, L.A., ”Differential Hydration of dA*dT Base Pairing and dA and dT Bulges in Deoxyoligonucleotides”, Biochemistry 30 (1991) 8018-8026
71.Rentzeperis, D., Kupke, D. W., and Marky, L. A., “Differential Hydration of dA·dT Base Pairs in Parallel-Stranded DNA Relative to Antiparallel DNA” Biochemistry 33 (1994) 9588-9591.
72.Marky, L. A., and Kupke, D. W., “Probing the Hydration of the Minor Groove of A·T Synthetic DNA Polymers by Volume and Heat Changes”, Biochemistry 28 (1989) 9982-9988.
74.Schweotzer, B. A., and Kool, E. T., “Hydrophobic, Non-Hydrogen-Bonding Bases and Base Pairs in DNA”, J. Am. Chem. Soc. 117 (1995) 1863-1872.
75.Rentzeperis, D., Shikiya, R., Maiti, S., Ho, J., and Marky, L. A., “Folding of Intramolecular DNA Hairpin Loops: Enthalpy-Entropy Compensations and Hydration Contributions”, J. Phys. Chem. B 106 (2002) 9945-9950.
76.Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., and Ebara, Y., “Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance”, Anal. Chem. 70 (1998) 1288-1296.
77.Kankia, B. I., and Marky, L. A., “DNA, RNA, and DNA/RNA Oligomer Duplexes: A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties” J. Phys. Chem. B 103 (1999) 8759-8767.
78.SantaLucia, J., Jr., Allawi, H. T., and Seneviratne, A., “Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability”, Biochemistry 35 (1996) 3555-3562.
79.Fotin, A. V., Drobyshev, A. L., Proudnikov, D. Y., Perov, A. N., and Mirzabekov, A. D., “Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips”, Nucleic Acids Research 26 (1998) 1515-1521.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2003-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明