博碩士論文 90324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:3.133.118.13
姓名 張孝煒(Shiau-Wei Jang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 甲醇製備氫氣在薄膜反應器之模擬
(Simulation of membrane reactor for methanol preparation hydrogen)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 薄膜反應器這個觀念,早在四十多年前便已產生。其原理主要為在傳統柱狀流反應器中加了一層薄膜,使得反應器同時具有反應和分離之功能。如此可以提高反應的轉化率及減少分離成本。本文主要是以數值模擬,來探討薄膜反應器(membrane reactor)之特性。將觸媒填充在管層的觸媒填充式薄膜反應器中改變反應進料層(feed-side)和滲透層(permeate-side)壓差、進料流量、沖洗氣體流量、薄膜厚度及氧醇比等操作條件,來暸解這些操作條件對於反應的影響。以有限差分法有效率地計算反應器內部濃度及流動情形,增進我們對甲醇蒸汽重組(steam reforming of methanol)與甲醇部分氧化(partial oxidation of methanol)反應在本反應器中反應進行的瞭解。
摘要(英) The idea of membrane reactor was proposed forty years ago. A membrane is inserted into a traditional reactor to make reaction and separation simultaneously occur in the reactor which can improve the conversion and reduce the separation cost. This study utilizes the finite difference method to simulate steam reforming of methanol and partial oxidation of methanol in inert membrane reactor with catalytic pellets in the feed-side chamber (IMRCF). The influence of operating variables, such as pressure, feed flow rate, sweep gas flow rate, membrane thickness, O2/CH3OH ratio etc. on the performance of system is studied.
關鍵字(中) ★ 有限差分法
★ 甲醇部分氧化
★ 甲醇蒸汽重組
★ 薄膜反應器
關鍵字(英) ★ finite difference method
★ partial oxidation of methanol
★ steam reforming of methanol
★ membrane reactor
論文目次 目錄
目錄 i
圖目錄 iii
表目錄 vi
第1章 緒論 1
第2章 簡介及文獻回顧 6
2-1 薄膜的分離概念 6
2-2 文獻回顧 8
2-2-1 薄膜材質 9
2-2-2 反應分類 15
2-2-3 數值模擬 18
2-3 氣體在薄膜的質傳機制 20
2-4 降低氫氣逆滲透的方法 26
第3章 理論及數值方法 30
3-1 基本假設 31
3-2 多成份系統中氣體分子擴散係數 33
3-3 統制方程式 39
3-4 數值方法與求解 56
第4章 結果與討論 58
4-1 參數的引用 59
4-2 驗證結果 67
4-3 進料層和滲透層的壓差之影響 73
4-4 進料流量之影響 78
4-5 沖洗氣體流量之影響 83
4-6 薄膜厚度之影響 88
4-7 氧醇比之影響 93
4-8 結論 97
第5章 未來方向 100
符號說明 102
參考文獻 107
圖目錄
1-1 Basic membrane separation unit 5
2-1 Back-permeation phenomenon of hydrogen occurring in a membrane reactor using palladium membrane 28
2-2 Three methods envisaged for depressing the back-permeation of hydrogen 29
3-1 The inert membrane reactor with catalyst in the feed-side (IMRCF) 32
3-2 Schematic cross-section of the membrane reactor 40
4-1 Cross-sectional view of the catalyst in the shell-side membrane reactor 61
4-2 Schematics of catalyst in the tube-side membrane reactor 64
4-3 Influence of reforming pressure on methanol conversion 70
4-4 Influence of reforming pressure on H2 recovery 71
4-5 Influence of flow rate of sweep gas on methanol conversion and H2 recovery 72
4-6 The effect of the reforming pressure on the methanol conversion in the IMRCF. [Pp=1atm,Qf 0=8.24*10-9kmol/s] 75
4-7 The effect of the reforming pressure on the H2 recovery in the IMRCF.[Pp=1atm,Qf0=8.24*10-9kmol/s] 76
4-8a The effect of the reforming pressure on the feed-side output flow rate (Qf)in the IMRCF. [Pp=1atm,Qf 0=8.24*10-9kmol/s] 77
4-8b The effect of the reforming pressure on the permeate-side output flow rate (Qp)in the IMRCF. [Pp=1atm,Qf 0=8.24*10-9kmol/s] 77
4-9 The effect of the dimensionless space time on the methanol conversion in the IMRCF. [Pf =4.5atm, Pp=1atm] 80
4-10 The effect of the dimensionless space time on the H2 recovery in the IMRCF.[Pf =4.5atm, Pp=1atm] 81
4-11a The effect of the dimensionless space time on the feed-side output flow rate (Qf) in the IMRCF. [Pf =4.5atm, Pp=1atm] 82
4-11b The effect of the dimensionless space time on the permeate-side output flow rate (Qp) in the IMRCF. [Pf =4.5atm, Pp=1atm] 82
4-12 The effect of the flow rate of sweep gas on the methanol conversion in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s 85
4-13 The effect of the flow rate of sweep gas on the H2 recovery in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 86
4-14a The effect of the flow rate of sweep gas on the feed-side output flow rate (Qf) in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 87
4-14b The effect of the flow rate of sweep gas on the permeate-side output flow rate (Qp) in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s]87
4-15 The effect of the thickness of the Pd-Ag membrane on the methanol conversion in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 90
4-16 The effect of the thickness of the Pd-Ag membrane on the H2 recovery in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 91
4-17a The effect of the thickness of the Pd-Ag membrane on the feed-side output flow rate (Qf) in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 92
4-17b The effect of the thickness of the Pd-Ag membrane on the permeate-side output flow rate (Qp) in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0 = 8.24*10-9 kmol/s] 92
4-18 The effect of the O2/CH3OH ratio on the methanol conversion in the IMRCF. [Pf =4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 95
4-19 The effect of the O2/CH3OH ratio on the H2 recovery in the IMRCF. [Pf = 4.5atm, Pp=1atm,Qf 0=8.24*10-9kmol/s] 96
表目錄
3.1 Summary of mass balance equation 54
3.2 Summary of dimensionless mass balance equation 55
4.1 Reactor size and kinetic parameter of reaction. [Itoh et al.,2002] 62
4.2 Modified reactor size 63
4.3 Reactor size and kinetic parameter of reaction 65
參考文獻 Agrell Johan, Henrik Birgersson, Magali Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation”, Journal of Power Sources ,106, p249-257 (2002)
Ali, Jawad K. and David W.T. Rippin,“Comparing Mono- and Bimetallic Noble-Metal Catalysts in a Catalytic Membrane Reactor for Methylcyclohexane Dehydrogenation”, Ind. Eng. Chem. Res, 34, p722-729 (1995).
Barbieri, G.,and F.P. Dimaio,“Simulation of the Methane Steam Re-Forming Process in a Catalytic Pd-Membrane Reactor”, Ind. Eng. Chem. Res, Vol. 36, p2121-2127 (1997).
Barbieri, G., V. violante, F.P. Dimaio, A. Criscuoli and E. Drioli,“Methane Steam Reforming Analysis in a Palladium-Based Catalytic Membrane Reactor”, Industrial &Engineering Chemistry Research, Vol. 36, p3369-3374 (1997).
Becker, Y.L., A.G. Dixon, W.R. Moser, and Y.H. Ma, “Modeling of ethylbezene dehydrogenation in a catalytic membrane reactor”, Journal of Membrane Science,Vol. 77, p233-244 (1993).
Beekman, J.W. and G.F. Froment, Ind. Eng. Chem. Fundam., 21, p243 (1982).
Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
Cao, Y., B. Liu and J. Deng,“Catalytic Dehydrogenation of ethanol in Pd-M/γ-Al2O3 Composite Membrane Reactors”, Applied Catalysis: A-General, Vol. 154, p129-138 (1997).
Cassanave, D., A. Giroir-Fendler, J. Sanchez, R. Loutaty, J-A Dalmon,“Control of Transport Properties with a Microporous Membrane Reactor to Enhance Yields in Dehydrogenation Reactions”, Catalysis Today, 25, p309-314 (1995).
Champagnie, A.M., T.T. Tsotsis, R.G. Minet, and I.A. Webster,“A high temperature catalytic membrane reactor for ethane dehydrogenation”, Chemical Engineering Science, Vol. 45, No. 8, p2423-2429 (1990).
Chen, S.H., H.Q. Fan and Y.K. Kao,“A Membrane Reactor With 2 Dispersion-Free Interfaces for Homogeneous Catalytic Reaction”, Chemical Engineering Journal and Biochemical Engineering Journal, Vol. 49, p35-43 (1992).
Collins, J.P., J.D.W., and N. Kraisuwansarn,“A mathematical model of a catalytic membrane reactor for the decomposition of NH3”, Journal of Membrane Science, 77, p265-282 (1993).
Davidson, A.P. and M. Salim, British Ceram., Proc., Vol.43, p119 (1988)
Dixon, A.G., W.R. Moser, Y.H. Ma,“Waste Reduction and Recovery Using O2-Permeable Membrane Reactors”, Industrial & Engineering Chemistry Research, Vol 33, Iss 12, p 3015-3024 (1994).
England and A.V. Shenoy,“Axial Dispersion in an Annulus Under Various Flow Conditions”,The Candadian Journal of Chemical Engineering, Vol 58,p419-421(1980)
Feng, C. and W.E. Stewart,“ Practical Models for Isothermal Diffusion and Flow of Gases in Porous Solids”, Ind. Chem. Fundam., 12, p143-147 (1973).
Finlayson, B.A., Nonlinear Analysis in Chemical Engineering, 1980.
Froment, G.I. and K.B. Bischoff, Chemical Reactor Analysis and Design, Wiley, New York, 1990.
Gines M.J.L., A.J. Marchi, C.R. Apesteguia,“Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts”, Applied Catalysis A: General, 154, p155-171 (1997)
Gobina, E., and R. Hughes,“Ethane dehydrogenation using a high temperature catalytic membrane reactor”, Journal of Membrane Science, 90, p11-19 (1994).
Gobina, E.,K. Hou ,and R. Hughes ,“Equilibrium-shift in Alkane Dehydrogenation Using a High-temperature catalytic membrane reactor”, Catalysis Today, 25, p365-370 (1995).
Gobina, E.,R. Hughes ,“Reaction Assisted Hydrogen Transport during Catalytic Dehydrogenation in a membrane reactor”, Applied Catalysis A:General ,137 ,p119-127 (1996).
Harold Michael P., Balamurali Nair, Gregor Kolios, “Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems”, Chemical Engineering Science, 58, p2551-2571 (2003)
Holland, C.D. and A.I. Liapis, Computer Methods for Solving Dynamic Separation Problem, McGraw-Hill, New York, 1983.
Hsieh, H.P.,“Inorganic Membrane Reactor-A Review”, AIChE Symposium Series, 268, Vol.85, p53-62 (1989).
Incropera, F.P. and D.P. De Witt, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1990.
Ito, N., Y. Shindo, T. Hakuta and H. Yoshitome,“ Enhanced catalytic decomposition of HI by using a microporous membrane”, Int. J. Hydrogen Energy, Vol.9, No.10, p835-839 (1984).
Ito, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta and H. Yoshitome,“ Simulation of a reaction accompanied by separation”, Int‘l Chem. Eng., Vol.25(1), p138-142 (1985).
Itoh, N.,“A memberane reactor using palladium", AIChE, Vol.33, p1576 (1987).
Itoh, N., M.A. Sanchez, W.C. Xu, K. Haraya and M. Hongo,“Application of a Membrane Reactor System to Thermal-Decomposition of CO2”, Journal of Membrane Science, 77, p245-253 (1993).
Itoh, N.,“Limiting Conversions of Dehydrogen in Palladium Membrane Reactor”, Catalysis Today, 25, p351-356 (1995).
Itoh, N., Y. Kaneko, and A. Igarashi,“Efficiet Hydrogen Production via Methanol Steam Reforming by Preventing Back-permeation of Hydrogen in a Palladium Membrane Reactor” Ind. Eng. Chem. Res, 41, p4702-4706 (2002)
Itoh, N. and T.H. Wu, ”An Adiabatic Type of Palladium Membrane Reactor for Coupling Endothermic and Exothermic Reactions”, Journal of Membrane Science, Vol. 124, p213-222 (1997).
Johnson, M.F.L. and W.E. Stewart,“Pore Structure and Gaseous Diffusion in Solid Catalysts”, J. Catal., 4, p248-252 (1965).
Kaza, K.R. and R. Jackson,“ Diffusion and Reaction of Multicomponent Gas Mixtures in Isothermal Porous Catalysts”, Chem. Eng. Sci., 35, p1179-1187 (1979).
Kikuchi, E., S.Uemiya, N. Sato, H. Incue, H. Ando and T. Matsuda,“Membrane reactor using microporous glass supported thin film of palladium. Application to the water gas shift reaction”, Chem. Lett, Vol.3, p489 (1989).
Kikuchi, E.,“Palladium/Ceramic Membranes for Selective Hydrogen Permeation and Their Application to Membrane reactor”, Catalysis Today , 25, p333-337 (1995).
Kim, J.S. and R. Datta,“Supported Liquid-Phase Catalytic Membrane Reactor Separator for Homogeneous Catalysis”, AIChE Journal, Vol. 37, p1657-1667 (1991).
Koukou, M.K., N. Papayannakos, and N.C. Markatos, “Dispersion Effects on Membrane Reactor Performance”, AIChE Journal ,Vol. 42, No.9, p2607-2615 (1996).
Koukou, M.K., G. Chaloulou, N. Papayannakos and N.C. Markatos,“Mathematical Modelling of the Performance of Non-Isothermal Membrane Reactor”, International Journal of Heat and Mass Transfer, Vol. 40 ,p2407-2417 (1997).
Lee, K.H., The Transport of Condensable Vapors through Microporous Vycor Glass Membrane, Ph. D. Dissertation, University of Iowa (1984).
Lin Yu-Ming, Min-Hou Rei,“Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer”, International Journal of Hydrogen Energy, 25, p211-219 (2000)
Lin Yu-Ming, Min-Hou Rei,“Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor ”, Catalysis Today, 67, p77-84 (2001)
Mason, E.A., A.P. Malinauskas and R.B. III Evans, “Flow and Diffusion of Gases in Porous Media”, J. Chem. Phys., 46, p3199-3216 (1967).
Perry‘s Chemical Engineer’s Handbook, Six Edition, 1985.
Reid, R.C., J.M. Prausnitz and T.K. Sherwood, The Properties of Gases and liquids, McGraw-Hill New York, Third Edition.
Shen Jian-Ping, Chunshan Song,“Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells”, Catalysis Today, 77, p89-98 (2002)
Shinji, O., M. Misono and Y. Yoneda,“The dehydrogenation of cyclohexane by the use of porou-glass reactor”, Bull. Chem. Soc. Japan, Vol.55, p2760 (1982).
Shu, J.B., P.A. Grandjean and S. Kaliaguine, ”Methane Steam Reforming in Asymmetric Pd-Ag and Pd-Ag/Porous SS Membrane Reactors”, Applied Catalysis A-General, Vol. 119, p305-325 (1994).
Shu, J.B., P.A. Grandjean, S. Kaliaguine, P. Ciavarella, A. Giroirfendler and A. Dalmon, “Gas Permeation and Isobutane dehydrogenation over very Thin Pd/Ceramic Membranes”, Canadian Journal of Chemical Engineering, Vol. 75, p712-720 (1997).
Smith, J.M. and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, New York, 1987.
Sun, Y.M.,”Catalytic Membrane Reactor-Modeling and Experimental of a Microporous Membrane Separation-Reaction System”, Ph.D. Dissertation, University of Cincinnati (1987).
Sun, Y.M. and S. J. Khang,“Catalytic Membrane for Simultaneous Chemical Reaction and Separation Applied to a Dehydrogenation Reaction”, Ind. Eng. Chem. Res., 27, p1136-1142 (1988).
Tiscareno-Lechuga, E., C.G. Hill Jr. and M.A. Anderson, “Effect of Dilute in the Experimental Dehydrogenation of Cyclohexane in hybrid membrane reactor”, Journal of Membrane Science, 118, p85-92 (1996).
Wakao, N. and J.M. Smith,“Diffusion in Catalyst Pellets”, Chem. Eng. Sci., 17, p825-834 (1962).
Wen, C.Y., and L.T. Fan, Models for Flow Systems and Chemical Reactors, 1975.
Wieland Ing. Steffen, Ing. Thomas Melin, Ing. A. Lamm, “Membrane reactors for hydrogen production”, Chemical Engineering Science, 57, p1571-1576 (2002)
Wild P.J. de, M.J.F.M. Verhaak,“Catalytic production of hydrogen from methanol”,Catalysis Today, 60, p3-10 (2000)
Wu, J.C.S., T.E. Gerdes, J.L. Pszczolkowski, R.R. Bhave and P.K.T. Liu, ”Dehydrogenation of Ethylbenzene to Styrene Using Commercial Ceramic Membrane as Reactor”, Sep. Sci. Tech., Vol.25, p1489-(1990).
Yeheskel, J., D. Lenger and P. Cournisier,“Thermal decomposition of hydroiodic acid and hydrogen separation”, Adv. Hydrogen Energy, Vol.2, p569 (1979).
Yang, Wei-Shen, Ji-Cheng Wu, Li-Wu Lin, “Application of membrane reactor for dehydrogenation of ethylbenzene”, Catalysis Today, 25, p315-319 (1995).
Zaspalis, V.T., W. van Praag, K. Keizer, J.G. van Ommen, J.R.H. Ross and A.J. Burggraaf, “Reactions of methanol over catalytically active alumina membranes”, Appl. catal., Vol.74, p205-222 (1991).
Zaspalis, V.T., W. van Praag, K. Keizer, J.G. van Ommen, J.R.H. Ross and A.J. Burggraaf,“Reactor studies using alumina separation membranes for dehydrogenation of methanol and n-butane”, Appl. catal., Vol.74, p223-234 (1991).
Ziaka, Z.D., R G. Minet, and T.T. Tsotsis,“ Propane Dehydrogenation in a Packed-Bed Membrane Reactor”, AIChE Journal, Vol. 39, No. 3, pp.526-529 (1993).
Xinrong Zhang, Penggei Shi,“Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts”, Journal of Molecular Catalysis A: Chemical, 194, p99-105 (2003)
Xinrong R. Zhang, Pengfei Shi, Jianxi Zhao,Mengyue Zhao, Chuntao Liu,“Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts”, Fuel Processing Technology, 83, p183-192 (2003)
Zhu, Y., R.G. Minet and T.T. Tsotsis,“Isobutane Dehydrogenation Reaction in a Packed-Bed Catalytic Membrane Reactor”, Catalysis Letters, Vol. 18, p49-58 (1993).
陳修立,“以柱式反應器研究甲醇在銅-鋅觸媒上行蒸汽重組與部分氧化反應製造氫氣之反應動力學”, 碩士論文, 清華大學 (1987)
王宏鈞,“薄膜反應器之模擬”, 碩士論文, 中央大學 (1996)
謝明賢,“環己烷脫氫在薄膜反應器之模擬”, 碩士論文, 中央大學 (1997)
楊閎舜,“環己烷脫氫在觸媒填充式薄膜反應器之非恆溫模擬”, 碩士論文, 中央大學 (1998)
葉君棣, “生產氫氣的低溫催化製程” , 石油暨石化科技產業科學技術合作 八十九年度期末報告, 清華大學 (2001)
楊閎舜,“薄膜反應器與變壓吸附整合程序之研究”, 行政院國家科學委員會專題研究計畫成果報告, 中央大學 (2001)
吳俊偉,“以不鏽鋼為基材之鈀銀合金複合膜管製備與研究”, 碩士論文, 清華大學 (2002)
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2004-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明