博碩士論文 953204001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.225.149.95
姓名 廖士傑(Shih-chieh Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙離子性poly(sulfobetaine)之表面聚合及其對於血漿蛋白之高效 抗吸附能力研究
(A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於生醫材料,控制其表面以達到抗非特異性生物分子吸附的特性是重要的一環,尤其材料必須表現出優異的抗吸附能力以及長效的穩定性。吾人選用sulfobetaine methacrylate(SBMA)單體,在修飾有溴官能基的金膜表面聚合成刷狀高分子poly(SBMA)。本研究主要利用表面電漿共振感測儀探討其循環抗蛋白質吸附之穩定性,以及在不同的操作環境下poly (SBMA)抗人體血漿蛋白質和血小板吸附的能力。此外,本研究使用兩種常見的材料為比較對象,其一是末端具有乙二烯乙二醇寡聚體的自組裝單層膜(OEG-SAM),另一個是末端為甲基的自組裝單層膜(CH3-SAM)。
單一蛋白質吸附測試的結果顯示,poly (SBMA)具有優異的抗蛋白質吸附特性,從SPR的共振頻率位移判斷,poly(SBMA)幾乎完全不吸附Human Serum Albumin (HSA)、γ-Globulin及Fibrinogen這三種人體血漿蛋白質,抗蛋白質吸附能力更勝於OEG-SAM。使用同一片樣品,經過三次重複吸附、脫附的測試發現,三種蛋白質依然不會吸附到poly (SBMA)的表面上,顯見此材料的使用穩定性。
在探討操作環境對poly(SBMA)抗蛋白質吸附的影響方面,本研究使用的環境變因包括:溫度、鹽濃度、鹽種類以及pH值。首先從溫度變因的結果來看,具有疏水表面的CH3-SAM 在溫度提高時疏水作用力變強,表面吸附上的蛋白質有略為增加,相對於CH3-SAM,親水的poly(SBMA)表面在22℃到37℃的範圍間,皆不吸附蛋白質;在改變環境鹽濃度及鹽種類的實驗結果,也發現儘管置於搶水環境,poly (SBMA)依舊能表現出優異的抗蛋白質吸附能力;而控制環境pH值在pH = 3到pH = 11的範圍做蛋白質吸附測試的實驗中,結果顯示poly(SBMA)在中性環境或鹼性環境可抗蛋白質吸附,不過從pH = 5的時候開始,poly (SBMA)表面會吸附蛋白質,甚至在pH = 3時的酸性環境中,蛋白質在poly(SBMA)表面接近單層或多層吸附。
本研究除了使用單一蛋白質做吸附測試外,另外還做了人體血漿及血小板的吸附測試。相對於OEG-SAM,實驗結果顯示poly(SBMA)表現出更佳的抗生物分子吸附能力。
摘要(英) An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate(SBMA).
The SBMA was grafted from a bromide-coated gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) [poly(SBMA)] grafted surfaces was measured with a surface plasmon resonance sensor.
It is revealed that an excellent stable nonbiofouling surface with grafted poly(SBMA) can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface.
It was found that the poly(SBMA) grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the poly(SBMA) grafted surface.
This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted poly(SBMA) brushes.
關鍵字(中) ★ 雙離子性
★ 表面電漿共振
★ 血漿蛋白
★ 抗吸附
關鍵字(英) ★ human blood plasma
★ zwitterionic
★ nonbiofouling
★ sulfobetaine methacrylate
★ surface plasmon resonance
論文目次 中文摘要…………………………………………………………………I
Abstract………………………………………………………………….III
誌謝……………………………………………………………………...V
目錄……………………………………………………………………..VI
圖目錄…………………………………………………………………...X
表目錄……………………………………………………………...…XIII
第一章 緒論……………………………………………………………1
第二章 文獻回顧………………………………………………………3
2.1 表面電漿共振 (Surface Plasmon Resonance, SPR) …………...3
2.1.1 表面電漿共振原理……………………………………..4
2.1.2 表面電漿共振的應用…………………………………..7
2.1.3 表面電漿共振感測儀類型……………………………..8
2.1.4 表面電漿共振感測儀檢測生物反應…………………..9
2.2 血液相容性材料……………………………………………….10
2.2.1 生物材料………………………………………………10
2.2.2 血液相容性……………………………………………12
2.2.3 血液之組成……………………………………………15
2.2.4 血液組成與表面的交互作用…………………………16
2.2.4.1 水與表面的交互作用……………………...…16
2.2.4.2 蛋白質與表面的交互作用………………..….17
2.2.4.3 細胞與表面的交互作用…………………..….20
2.2.5 材料與血液的相互關係………………………………21
2.2.5.1 血小板………………………………………...22
2.2.5.2 生物材料與血小板的相互關係……………...24
2.2.5.3 凝血機制……………………………………...25
2.2.5.4 生物材料與凝血機制的相互關係…………...28
2.2.6 血液相容性材料之回顧………………………………29
2.2.6.1水凝膠………………………………………….30
2.2.6.2氟化表面……………………………………….30
2.2.6.3白蛋白之表面塗佈(Albumin Coating) ……….31
2.2.6.4 表面之聚乙烯乙二醇固定化………………...32
2.2.6.5 類磷脂質之仿生表面………………………...33
2.2.6.6 表面之幾丁聚糖固定化……………………...34
2.2.6.7 表面之肝素固定化…………………………...35
2.3 仿生雙離子性高分子之血液相容性相關研究……………….37
2.3.1 PC類雙離子性高分子…………………………………39
2.3.2 CB及SB類雙離子性高分子………………………….46
2.4 原子轉移自由基聚合法……………………………………….48
(Atom Transfer Radical Polymerization, ATRP)
2.5 材料表面抗蛋白質吸附之機制……………………………….51
2.5.1 Mackor model阿……………………………………….51
2.5.2 立體排斥………………………………………………52
2.5.3 水合作用………………………………………………54
第三章 實驗藥品、設備及實驗方法………………………………..56
3.1 實驗藥品……………………………………………………...56
3.2 實驗設備……………………………………………………...58
3.3 實驗方法……………………………………………………...59
3.3.1 緩衝溶液的製備………………………………………59
3.3.2 蛋白質溶液的製備……………………………………60
3.3.3 血漿溶液的分離與稀釋………………………………61
3.3.4 金表面改質……………………………………………62
3.3.5 表面電漿共振感測儀之實驗…………………………66
3.3.6 血小貼附實驗…………………………………………67
3.3.7 生物性原子力顯微鏡之實驗…………………………68
第四章 結果與討論…………………………………………………..69
4.1 表面鑑定……………………………………………………...69
4.1.1靜態接觸角測量……………………………………….70
4.1.2化學分析電子光譜儀檢測樣品表面組成…………….73
4.1.3原子力顯微鏡掃描樣品表面構形…………………….75
4.2 蛋白質吸附測試……………………………………………...78
4.2.1抗單一蛋白質吸附測試……………………………….79
4.2.2 循環使用穩定性測試……..…………………………..82
4.2.3各種效應對poly(SBMA)穩定性的影響……..……….83
4.2.3.1 溫度效應……………………………………….83
4.2.3.2 鹽類效應……………………………………….86
4.2.3.3 pH值效應…………………………………….91
4.3 血漿吸附測試………………………………………………...95
4.4 血小板貼附測試……………………………………………...99
第五章 結論…………………………………………………………101
第六章 參考文獻……………………………………………………103
附件 發表於Langmuir期刊之文章………………………………..116
參考文獻 1. Senaratne W., L. Andruzzi, C. K. Ober, Self-assembled
monolayers and polymer brushes in biotechnology: Current
applications and future perspectives. Biomacromolecules, 2005,
6(5): p. 2427-2448.
2. Kwak D., Y. G. Wu, T. A. Horbett, Fibrinogen and von
Willebrand's factor adsorption are both required for platelet adhesion
from sheared suspensions to polyethylene preadsorbed with blood
plasma. Journal of Biomedical Materials Research Part A, 2005,
74A(1): p. 69-83.
3. Harris J. M., Poly(ethylene glycol) Chemistry: Biotechnical and
Biomedical Applications. Plenum Press, 1992.
4. Ostuni E., R. G. Chapman, R. E. Holmlin, S. Takayama, G. M. Whitesides, A survey of structure-property relationships of
surfaces that resist the adsorption of protein. Langmuir, 2001,
17(18): p. 5605-5620.
5. Iwasaki Y., K. Ishihara, Phosphorylcholine-containing polymers
for biomedical applications. Analytical and Bioanalytical Chemistry,
2005, 381(3): p. 534-546.
6. Cho W. K., B. Y. Kong, I. S. Choi, Highly efficient non-biofouling coating of zwitterionic polymers: Poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir, 2007, 23(10): p. 5678-5682.
7. Zhang Z., T. Chao, S. F. Chen, S. Y. Jiang, Superlow fouling
sulfobetaine and carboxybetaine polymers on glass slides. Langmuir,
2006, 22(24): p. 10072-10077.
8. Feng W., J. L. Brash, S. P. Zhu, Non-biofouling materials
prepared by atom transfer radical polymerization grafting of
2-methacryloloxyethyl phosphorylcholine: Separate effects of graft
density and chain length on protein repulsion. Biomaterials, 2006,
27(6): p. 847-855.
9. Chang Y., S. F. Chen, Z. Zhang, S. Y. Jiang, Highly protein
-resistant coatings from well-defined diblock copolymers containing
sulfobetaines. Langmuir, 2006, 22(5): p. 2222-2226.
10. Chen S. F., J. Zheng, L. Y. Li, S. Y. Jiang, Strong resistance of
phosphorylcholine self-assembled monolayers to protein
adsorption: Insights into nonfouling properties of zwitterionic
materials. Journal of the American Chemical Society, 2005,
127(41): p. 14473-14478.
11. Holmlin R. E., X. X. Chen, R. G. Chapman, S. Takayama, G. M.
Whitesides, Zwitterionic SAMs that resist nonspecific adsorption
of protein from aqueous buffer. Langmuir, 2001, 17(9): p. 2841
-2850.
12. Zhang Z., S. F. Chen, Y. Chang, S. Y. Jiang, Surface grafted
sulfobetaine polymers via atom transfer radical polymerization as
superlow fouling coatings. Journal of Physical Chemistry B, 2006,
110(22): p. 10799-10804.
13. Morgan H., D. M. Taylor, A surface plasmon resonance
immunosensor based on the streptavidin-biotin complex. Biosensor
and Bioelectronics, 1992, 7: p. 405-410.
14. Boozer C., J. Ladd, S. F. Chen, S. T. Jiang, DNA-directed
protein immobilization for simultaneous detection of multiple
analytes by surface plasmon resonance biosensor. Analytical
Chemistry, 2006, 78(5): p.1515-1519.
15. Ladd J., C. Boozer, Q. M. Yu, S. F. Chen, J. Homola, S. Jiang,
DNA-directed protein immobilization on mixed self-assembled
monolayers via a Streptavidin bridge. Langmuir, 2004, 20(19): p.
8090-8095.
16. Myszka D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in
Biotechnology, 1997, 8(1): p. 50-57.
17. Myszka D. G., M. D. Jonsen, B. J. Graves, Equilibrium analysis
of high affinity interactions using BIACORE. Analytical
Biochemistry, 1998, 265(2): p. 326-330.
18. 許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分
析. 碩士論文, 國立清華大學生醫工程與環境科學系, 2006.
19. Ritchie R. H., Plasma losses by fast electrons in thin films. Physical
Review, 1957, 106: p. 874.
20. Otto A., Excitation of nonradiative surface plasma waves in silver
by the method of frustrated total reflection. Z. Physik, 1968: p. 216.
21. Kretschmann E., H. Raether, Radiative decay of non-radiative
surface plasmons excited by light. Z. Naturforsch, 1968, 23A: p.
2135-2136.
22. Nylander C., B. Liedberg, T. Lind, Gas detection by means of
surface plasmon resonance. Sensors and Actuators 3, 1982, 1:
p.79-88.
23. Liedberg B., C. Nylander, Surface plasmons resonance for gas
detection and biosensing. Sensors and Actuators 4, 1983, p.299-304
24. http://www.biacore.com/lifesciences/index.html
25. Ratner B. D., A. Hoffman, F. Schoen, J. Lemons, History of
Biomaterials. Biomaterials Science, 2004, p.10-19.
26. Chen Q. Z., S. E. Harding, N. N. Ali, A. R. Lyon, A. R. Boccaccini,
Biomaterials in cardiac tissue engineering: Ten years of research
survey. Materials Science & Engineering R-Reports, 2008. 59(1-6):
p. 1-37.
27. Levine M., The bionic human: "If I only had a..." Science, 2002,
295(5564): p. 2370-2370.
28. Gorbet M. B., M. V. Sefton, Biomaterial-associated thrombosis:
roles of coagulation factors, complement, platelets and leukocytes.
Biomaterials, 2004, 25(26): p. 5681-5703.
29. Padera R. F., Schoen, F. J. , Cardiovascular medical devices -
An introduction to materials in medicine. Biomaterials Science,
Elsevier, Academic Press, San Diego, CA, 2004: p.470-494.
30. Hanson S. R., Blood coagulation and blood-materials interactions.
- An introduction to materials in medicine. Biomaterials Science,
Elsevier, Academic Press, San Diego, CA, 2004: p.332.
31. Ratner B. D., Blood compatibility - Foreword. Journal of
Biomaterials Science-Polymer Edition, 2000, 11(11): p. 1105-1106.
32. Ratner B. D., Blood compatibility - a perspective. Journal of
Biomaterials Science-Polymer Edition, 2000, 11(11): p. 1107-1119.
33. Ratner B. D., The catastrophe revisited: Blood compatibility in the 21st century. Biomaterials, 2007, 28(34): p. 5144-5147.
34. Moriau M., The physiological mechanisms of haemostasis -
Blood Platelets. Hologramme Ed., Neuilly-sur-Seine, 1988.
35. Vogler E. A., Structure and reactivity of water at biomaterial
surfaces. Advances in Colloid and Interface Science, 1998, 74: p.
69-117.
36. Goertz M. P., J. E. Houston, X. Y. Zhu, Hydrophilicity and the
viscosity of interfacial water. Langmuir, 2007, 23(10): p.
5491-5497.
37. Johnson C. A., P. Wu, A. M. Lenhoff, Electrostatic and Van-Der-Waals contributions to protein adsorption: 2. Modeling of ordered arrays. Langmuir, 1994, 10(10): p. 3705-3713.
38. Hunter R., Foundations of Colloid Science, vol. I. Oxford Science
Publications, New York, 1989.
39. Ramsden J. J., Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 1995, 24(1): p. 73-78.
40. Vroman L., The importance of surfaces in contact phase reactions.
Seminars in Thrombosis and Hemostasis,1987,13(1) : p.79-85.
41. Salvagnini C., Thrombin inhibitors grafting on polyester
membranes for the preparation of blood-compatible materials. The
doctoral dissertation, Université Catholique de Louvain, Belgium,
2005.
42. Vroman L., Finding seconds count after contact with blood (and
that is all I did). Colloids and Surfaces B: Biointerfaces, 2008, 62:
p.1-4
43 Eloy R., Belleville J., Biomaterial-blood interaction - Concise
encyclopedia of medical & dental materials. Williams, D.F. Ed.,
Pergamon Press, 1990: p.74-85.
44. Wu Y. G., F. I. Simonovsky, B. D. Ratner, T. A. Horbett, The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A, 2005, 74A(4): p. 722-738.
45. Hanson S. R., Harker L. A., Blood coagulation and bood – materials interactions. Biomaterials Science, Academic Press, San Diego, 1996: p. 193-199.
46. Blockmans D., H. Deckmyn, J. Vermylen, Platelet activation.
Blood Reviews, 1995, 9(3): p. 143-156.
47. Holme P. A., N. O. Solum, F. Brosstad, T. Pedersen, M. Kveine, Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis and Haemostasis, 1998, 79(2): p. 389-394.
48. Ratner B. D., The Blood compatibility catastrophe. Journal of
Biomedical Materials Research, 1993, 27(3): p. 283-287.
49. Gemmell, C. H., S. M. Ramirez, E. L. Yeo, M. V. Sefton,
Platelet activation in whole-blood by artificial surfaces –
identification of platelet-derived microparticles and activated
platelet binding to leukocytes as material-induced activation events.
Journal of Laboratory and Clinical Medicine, 1995, 125(2): p.
276-287
50. Nydegger U., R. Rieben, B. Lammle, Biocompatibility in
transfusion medicine. Transfusion Science 1996, 4: p.481-488.
51. Peppas N. A., K. B. Keys, M. Torres-Lugo,A. M. Lowman,
Poly(ethylene glycol)-containing hydrogels in drug delivery.
Journal of Controlled Release, 1999, 62: p.81-87.
52. Sefton M. V., C. H. Gemmell, Nonthrombogenic treatments and
strategies - An introduction to materials in medicine. Biomaterials
Science, Elsevier, Academic Press. San Diego, CA, 2004: p.456-
470.
53. Tang Y. W., J. P. Santerre, R. S. Labow, D. G. Taylor.,
Synthesis of surface-modifying macromolecules for use in
segmented polyurethanes. Journal of Applied Polymer Science,
1996, 62: p.1133-1145.
54. Munro M., A. J. Quattrone, S. R. Ellsworth, P. Kulkarni, Alkyl
substituted polymers with enhanced albumin affinity. Transactions
- American Society for Artificial Internal Organs, 1981, 27:
p.499-503.
55. 許朝翔, 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作
用機制. 碩士論文, 國立中央大學化學工程與材料工程系,
2007.
56. Vermette P., L. Meagher, Interactions of phospholipid- and
poly(ethylene glycol)-modified surfaces with biological systems:
relation to physico-chemical properties and mechanisms. Colloids
and Surfaces B: Biointerfaces, 2003, 28: p. 153-198
57. Mao C., A. P. Zhu, Y. Z. Qiu, J. Shen, S. C. C. Lin, Introduction of
O-butyrylchitosan with a photosensitive hetero-bifunctional
crosslinking reagent to silicone rubber film by radiation grafting
and its blood compatibility. Colloids and Surfaces B-Biointerfaces,
2003, 30(4): p. 299-306.
58. Mao C., J. J. Zhu, Y. F. Hu, Q. Q. Ma, Y. Z. Qiu, A. P. Zhu, W. B.
Zhao, J. Shen, Surface modification using photocrosslinkable
chitosan for improving hemocompatibility. Colloids and Surfaces
B-Biointerfaces, 2004, 38(1-2): p. 47-53.
59. Fareed J., Heparin, its fractions, fragments and derivatives-Some
newer perspectives. Seminars in Thrombosis and Hemostasis, 1985
, 11(1): p. 1-9.
60. Larm O., R. Larsson, P. Olsson, A new non-thrombogenic
surface prepared by selective covalent binding of heparin via a
modified reducing terminal residue. Biomaterials,medical devices,
and artificial organs, 1983, 11, 161-173.
61. Georgiev G. S., E. B. Karnenska, E. D. Vassileva, I. P. Kamenova,
V. T. Georgieva, S. B. Iliev, I. A. Ivanov, Self - assembly ;
antipolyelectrolyte effect; and nonbiofouling properties of
polyzwitterions. Biomacromolecules, 2006, 7(4): p. 1329-1334
62. Lewis A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000, 18(3-4): p. 261-275.
63. Iwasaki Y., N. Saito, Immobilization of phosphorylcholine polymers to Ti-supported vinyldimethylsilyl monolayers and reduction of albumin adsorption. Colloids and Surfaces B-Biointerfaces, 2003, 32(1): p. 77-84.
64. Yamasaki A., Y. Imamura, K. Kurita, Y. Iwasaki, N. Nakabayashi, K. Ishihara, Surface mobility of polymers having phosphorylcholine groups connected with various bridging units and their protein adsorption-resistance properties. Colloids and Surfaces B-Biointerfaces, 2003, 28(1): p. 53-62.
65. Feng W., S. P. Zhu, K. Ishihara, J. L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface - initiated atom transfer radical polymerization. Langmuir, 2005, 21(13): p. 5980-5987.
66. Nakabayashi N., Y. Iwasaki, Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering, 2004, 14(4): p. 345-354.
67. Goda T., T. Konno, M. Takai, T. Moro, K. Ishihara, Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials, 2006, 27(30): p. 5151-5160.
68. Nederberg F., J. Watanabe, K. Ishihara, J. Hilborn, T. Bowden, Biocompatible and biodegradable phosphorylcholine ionomers with reduced protein adsorption and cell adhesion. Journal of Biomaterials Science-Polymer Edition, 2006, 17(6): p. 605-614.
69. Sibarani J., M. Takai, K. Ishihara, Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B-Biointerfaces, 2007, 54(1): p. 88-93.
70. Kros A., M. Gerritsen, J. Murk, J. A. Jansen, N. A. J. M. Sommerdijk, R. J. M. Nolte, Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. Journal of Polymer Science Part a-Polymer Chemistry, 2001, 39(4): p. 468-474.
71. Zhu A. P., S. Q. Wang, Y. L. Yuan, J. Shen. 2002, Cell adhesion behavior of chitosan surface modified by bonding 2-methacryloyloxyethyl phosphorylcholine. Journal of Biomaterials Science-Polymer Edition, 2002, 13(5): p. 501-510.
72. Chen H., Y. C. Nho, A. S. Hoffman, Grafting copolymerization
of 2-methacryloyloxyethyl phosphorylcholine (MPC) onto
pre-irradiated cellulose films. Journal of Biomaterials
Science-Polymer Edition, 2004, 15(7): p. 841-849.
73. Fujii K., H. N. Matsumoto, Y. Koyama, Y. Iwasaki, K. Ishihara, K. Takakuda, Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Veterinary Medical Science, 2008, 70(2): p. 167-173.
74. Moro T., Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U. I. Chung, K. Nakamura, H. Kawaguchi, Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Materials, 2004, 3(11): p. 829-836.
75. Zhang Z., S. F. Chen, S. Y. Jiang, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006, 7(12): p. 3311-3315.
76. Pyun J., T. Kowalewski, K. Matyjaszewski, Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications, 2003, 24(18): p. 1043-1059.
77. Timothy E. Patten, Jianhui Xia, Teresa Abernathy , Krzysztof
Matyjaszewski, Polymers with very low polydispersities
from atom transfer radical polymerization. Science, 1996, 272: p.
866-868
78. Morra M., On the molecular basis of fouling resistance. Journal of Biomaterials Science-Polymer Edition, 2000, 11(6): p. 547-569.
79. Halperin A., Polymer brushes that resist adsorption of model proteins: Design parameters. Langmuir, 1999. 15(7): p. 2525-2533.
80. Pasche S., J. Voros, H. J. Griesser, N. D. Spencer, M. Textor, Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. Journal of Physical Chemistry B, 2005, 109(37): p. 17545-17552.
81. Unsworth L. D., H. Sheardown, J. L. Brash, Protein resistance of
surfaces prepared by sorption of end-thiolated poly(ethylene
glycol) to gold: Effect of surface chain density. Langmuir, 2005,
21(3): p. 1036-1041.
82. Herrwerth S., W. Eck, S. Reinhardt, M. Grunze, Factors that determine the protein resistance of oligoether self-assembled monolayers - Internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society, 2003, 125(31): p. 9359-9366.
83. Prime K. L., G. M. Whitesides, Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled Monolayers. Journal of the American Chemical Society, 1993, 115(23): p. 10714-10721.
84. Zheng J., L. Y. Li, S. F. Chen, S. Y. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 2004, 20(20): p. 8931-8938.
85. Kitano H., T. Mori, Y. Takeuchi, S. Tada, M. Gemmei-Ide, Y. Yokoyama, M. Tanaka, Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Macromolecular Bioscience, 2005, 5(4): p. 314-321.
86. Jones D. M., A. A. Brown, W. T. S. Huck, Surface-initiated polymerizations in aqueous media: Effect of initiator density. Langmuir, 2002, 18(4): p. 1265-1269.
87. Azzaroni O., A. A. Brown, W. T. S. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie-International Edition, 2006, 45(11): p. 1770-1774.
88. Feldman K., G. Hahner, N. D. Spencer, P. Harder, M. Grunze,
Probing resistance to protein adsorption of
oligo(ethylene glycol)-terminated self-assembled monolayers by
scanning force microscopy. Journal of the American Chemical
Society, 1999, 121(43): p. 10134-10141.
89. Harder P., M. Grunze, R. Dahint, G. M. Whitesides, P. E. Laibinis, Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. Journal of Physical Chemistry B, 1998, 102(2): p. 426-436.
90. Wang R. L. C., H. J. Kreuzer, M. Grunze, Molecular
conformation and solvation of oligo(ethylene glycol)-terminated
self-assembled monolayers and their resistance to protein
adsorption. Journal of Physical Chemistry B, 1997, 101(47): p.
9767-9773.
91. Kane R. S., P. Deschatelets, G. M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003, 19(6): p. 2388-2391.
92. Li L. Y., S. F. Chen, J. Zheng, B. D. Ratner, S. Y. Jiang, Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
93. Jung L. S., C. T. Campbell, T. M. Chinowsky, M. N. Mar, S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998, 14(19): p. 5636-5648.
94. Leckband D., S. Sheth, A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science-Polymer Edition, 1999, 10(10): p. 1125-1147.
95. Kunz W., J. Henle, B.W. Ninham, 'Zur Lehre von der Wirkung
der Salze' (about the science of the effect of salts): Franz
Hofmeister's historical papers. Current Opinion in Colloid &
Interface Science, 2004, 9(1-2): p. 19-37.
96. Lowe A. B., C .L. McCormick, Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002, 102(11): p. 4177-4189.
97. Muzammil S., Y. Kumar, S. Tayyab, Molten globule-like state
of human serum albumin at low pH. European Journal of
Biochemistry, 1999, 266(1): p. 26-32.
98. Kumar Y., S. Tayyab, S. Muzammil, Molten-globule like
partially folded states of human serum albumin induced by fluoro
and alkyl alcohols at low pH. Archives of Biochemistry and
Biophysics, 2004, 426(1): p. 3-10.
指導教授 陳文逸(Wen-yih Chen) 審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明