參考文獻 |
參考文獻
[1] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol”, Appl. Catal. A: Gen. 223 (2002) 137-145.
[2] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[3] M. Fernández-García, E. Gómez Rebollo, A. Guerrero Ruiz, J.C. Conesa, J. Soria, “Influence of ceria on the dispersion and reduction/oxidation behaviour of alumina-supported copper catalysts”, J. Catal. 172 (1997) 146-159.
[4] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[5] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of htdrogen for feul cells: catalyst characterization and performance evaluation”, J. Catal. 194 (2000) 373-384.
[6] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, C. Liu, “Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts”, Fuels Furn. 83 (2003) 183-192.
[7] A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomacker, R. Schlogl, T. Ressler, “Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study”, J. Catal. 230 (2005) 464-475.
[8] S. Velu, K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Topics in Catalysis 22 (2003) 235-244.
[9] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
[10] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO---ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
[11] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts” J. Catal. 109 (1988) 263-273.
[12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
[13] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
[14] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
[15] A.P. Meyer, J.A.S. Bett, G. Vartanian, R.A. Sederquist, “Parametric analysis of 1.5 kW methanol-fuel cell power plant designs”, US Army Technical Report DAAK70-77-C-0195, 1978.
[16] E. Santacesaria, S. Carrá, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
[17] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
[18] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
[19] R. Dümpelmann, “Kinetische Untersuchungen des Methanol reforming und der Wassergaskonvertierungsreaktion in einem konsentrationgeregelten Kreislaufreaktor”, Ph.D. Dissertation, Eidgenössischen Technischen Hochschule, Zürich, 1992.
[20] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
[21] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam, 1994, pp. 409-412, ISBN 0-444-89535-3.
[22] G. Liu, D. Willcox, M. Garland, and H. H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
[23] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, and D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333.
[24] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium, 1986, pp. 623-628.
[25] K.C. Waugh, “Methanol synthesis”, Catalysis Today 15 (1992) 51-75.
[26] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network”, Appl. Catal. A: Gen. 179 (1999) 21-29.
[27] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
[28] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
[29] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
[30] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc., Faraday Trans. 87(17) (1991) 2785-2793.
[31] I.E. Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper(110) catalyst”, J. Catal. 53 (1978) 208-227.
[32] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of the adsorption of methanol on oxidised and reduced Cu/SiO2 catalysts”, J. Chem. Soc., Faraday Trans. 87(17) (1991) 2795-2804.
[33] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, “Temperature-programmed surface reactions of methanol on commercial Cu-containing catalysts”, Catalysis Letters 3 (1989) 299-307.
[34] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
[35] B. Frank, F.C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
[36] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
[37] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
[38] R.O. Idem, N.N. Bakhshi, Ind. Eng. Chem. Res. 33 (1994) 2056.
[39] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catalysis Lettters 25 (1994) 271-276.
[40] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
[41] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
[42] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
[43] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[44] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J Porous Mater (2006) 13: 373-378.
[45] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, J. Phys. Chem. 87 (1983) 3740.
[46] K.T. Jung, A.T. Bell, “Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper”, Catalysis Letters 80 (2002) 63-68.
[47] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide”, Appl. Catal. A: Gen. 112 (1994) 219-235.
[48] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
[49] M. Pijolat, M. Prin, M. Soustelle, “Thermal stability of doped ceria: experiment and modeling”, J. Chem. Soc., Faraday Trans. 91 (1995) 3941-3948.
[50] P. Fornasiero, G. Balducci, R.D. Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, “Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2”, J. Catal. 164 (1996) 173-183.
[51] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
[52] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction-kinetics”, J. Catal. 153 (1995) 317-332.
[53] 黃振瑋,「CuO/Ce1-xSnxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
[54] 張煒謙,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國95年。
[55] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。
[56] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. Catal. 251 (2007) 7-20.
[57] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen”, Appl. Catal. B: Env. 66 (2006) 168-174.
[58] J.B. Friedrich, M.S. Wainwright, D.J. Young, “Methanol synthesis over Raney copper-zinc catalysts : I. Activities and surface properties of fully extracted catalysts”, J. Catal. 80 (1983) 1-13.
[59] J.B. Friedrich, M.S. Wainwright, D.J. Young, “Methanol synthesis over Raney copper-zinc catalysts : II. Activities and surface properties of a partially leached alloy”, J. Catal. 80 (1983) 14-24.
[60] B. Dvorak, J. Pasek, “Determination of the specific copper surface area by chromatographic technique”, J. Catal. 18 (1970) 108-114.
[61] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7 (1983) 75.
[62] E. Giamello, B. Fubini, P. Lauro, A. Bossi, “A microcalorimetric method for the evaluation of copper surface area in Cu---ZnO catalyst” J. Catal. 87 (1984) 443-451.
[63] G.C. Chinchen, C.M. Hay, H.D. Vandervell, K.C. Waugh, “The measurement of copper surface areas by reactive frontal chromatography”, J. Catal. 103 (1987) 79-86. |