博碩士論文 953204021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.133.122.65
姓名 呂俊旺(Jyun-wang Lyu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 甚高濃度有機廢水之催化溼式氧化處理
(Catalytic wet oxidation of very highly organics contaminated strong alkaline wastewater.)
相關論文
★ 以溴化四丁基銨鹽電解-電透析合成醋酸四丁基銨鹽及該鹽之精製★ 溴化四丁基銨鹽之製備與其電解─電透析方法以合成氯化四丁基銨鹽之研究
★ 彩色濾光片再生製程強鹼染料廢水之電解-電透析處理以去除廢水中之KOH,並同時合成KOH與NaOCl★ 彩色濾光片玻璃基板再生製程強鹼染料廢液之催化濕式氧化處理
★ 甚高有機污染強鹼廢水之電透析前處理★ 甲醇鈉之製備與其與二氯甲烷之液-固相轉移催化甲氧基取代
★ 醋酸丁酯之液-固相轉移催化合成及其水解研究★ 醋酸丙烯酯之液-固相轉移催化合成及其水解研究
★ 鹵化四丁基銨之合成動力學、溶解、萃取及精製研究★ 醋酸戊酯之相轉移催化水解以合成正戊醇之研究
★ 四丁基銨鹽之溶解度、締合常數、活性係數及分佈係數★ 溶劑與陰離子(Y)之結構對一典型相轉移催化親核取代反應BzCl + Bu4NY→BzY + Bu4NCl之反應性之效應
★ 溶劑、親核劑(QBr)陽離子之結構及溫度對相轉移催化反應BzCl + QBr<--> BzBr + QCl 之反應 性之效應★ 溶劑、基質結構及溫度對相轉移催化親核取代反應ROH + Bu4NCl<-->RCl +Bu4NOH 之反應 性之效應
★ 2-胺基噻吖唑衍生物合成與其性質之探討★ 合成1,3-双[5-苯基-1,3,4-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 彩色濾光片所產生之甚高濃度有機廢水之催化溼室氧化處理中,氫氧化鉀濃度大約1.7 N,須降至適當的pH = 9~12 才能做後續處理。而電透析是為一種有效降低該廢水氫氧化鉀濃度、並且回收氫氧化鉀的方法。而後續處理就是濕式催化氧化。
而本研究是以催化濕式氧化法(Catalytic Wet Air Oxidation ,CWAO)處理彩色濾光片玻璃基板再生製程強鹼染料廢水,(COD約160000-180000 ppm),pH值> 14,導電度約87 mS/cm,本研究首先進行催化劑的選擇,比較氧化銅 ( CuO )、氧化亞銅 (Cu2O)、Ru on Carbon、二氧化錳 ( MnO2 )、四氧化三鈷 ( Co3O4 )、以及氧化鋅 (ZnO)等等催化劑對於此反應的催化氧化能力,在溫度120 oC,反應至120分鐘後,部份的催化劑能使COD明顯的下降,而COD去除率較佳的分別為Cu2O : 29.7 %、CuO : 21 %、Co3O4 : 19 %,其結果顯示Cu2O較佳,故選擇Cu2O為此處理程序的催化劑。
對於有無添加催化劑的系統,進行導電度、pH值及COD去除率之比較,並改變操作參數,如反應溫度、氧氣壓力、攪拌速率、催化劑含量等可控因素對催化濕式氧化系統之影響,以尋求最適處理條件。攪拌速率方面,在500 rpm以上有較佳的COD去除率,故選擇600 rpm;而溫度方面120 ℃以上其COD去除率較佳;壓力方面隨著Po2,0(初始通入氧氣量)的增加,COD去除率也相對增加,所以選擇Po2,0 = 500 psig,而反應總壓為530 psig;催化劑量方面顯示1.2 g (15 g/L)較佳的COD除去率。
最後綜合以上結果,決定出最適化的操作參數進行反應(攪拌速率600 rpm、溫度120 ℃、Po2,0 = 500 psig、催化劑量1.2 g (15 g/L),但反應時間的增加Pco2的量已佔總壓的大部份,使Po2量下降且氧氣不易進入,所以配合多段操作的方式去除產生的二氧化碳,使氧氣能順利進入並參與反應,而本研究的成果在以上最佳操作條件下,以多段操作洩除Pco2方式,配合後半段變溫的操作,在反應330分鐘後COD去除率已達91.69 %,已能使高強度的廢水被氧化分解,期望能更進一步深度處理而達到回收再利用的標準。
摘要(英) The KOH concentration of the very high organics contaminated wastewater from the process of the recovery of color glass filter plate is about 1.7N. The very high organics contaminated wastewater should be reduced to a suitable pH range of 9 to12, so that it can be treated by other process. Electrodialysis is a suitable process to reduce the basicity of the wastewater and simultaneously recover the KOH. And the process after electrodialysis is wet air oxidation.
This research is the very high organics contaminated wastewater from the process of the recovery of color glass filter plate treatment by catalytic Wet Air Oxidation (COD 160000-180000 ppm), pH > 14, conductivity is 87 mS/cm . At the first, this research carries on the choice of the catalyst, compare CuO, Cu2O and Ru on Carbon , MnO2 , Co3O4, ZnO etc. to react for 120 minutes at 120 oC, some of them could make COD removal % increase effectively , and the more effective catalysts in COD removal % are respectively Cu2O : 29.7 % , CuO : 21 % , Co3O4 : 19 %, the result to show Cu2O has better oxidation ability, so choose Cu2O as catalysis for process.
And then, comparing the no catalyst system and different kind of catalysts system, carry on the comparison of conductivity , pH and COD removal %, and change the parameter as react temperature, oxygen pressure, stirring speed , amount of catalyst, in order to seek the optimum condition. stirring speed, there is better getting COD removal in above 500 rpm , so choose 600 rpm; And temperature is more effective above 120 ℃; The pressure is increase with Po2, COD removal % is also increase relatively, so choose Po2 =500 psig, and Pt = 530 psig; the amount of Catalyst shows that 1.2 g (15 g/L) has better COD removal %.
Synthesize the above result finally, it is determined that the optimum operation parameters (stirring speed 600 rpm , temperature 120 ℃, Po2 = 500 psig ,the amount of catalysis is 1.2 g (15 g/L),but with the increasing of time, the quantity of the carbon dioxide increases too. It makes Po2 drop and difficult to enter reactor, so we cooperate with many steps and changing temperature to 150 oC upper 150 min to operate to reject the carbon dioxide and increase COD removal %. After operating the many steps in the optimum conditions, the COD removal could be up to 91.69 % already , can make the very high organics contaminated wastewater to decompose.
關鍵字(中) ★ 甚高濃度有機廢水
★ 溼式氧化
關鍵字(英) ★ very highly organics contaminated strong alkalin
★ wet oxidation
論文目次 摘要………………………………………………………I
致謝………………………………………………………V
目錄………………………………………………………VI
符號說明………………………………………………XIV
第一章 前言
1-1 廢水處理法-------------------------------------------------------------1
1-1-1 臭氧氧化法------------------------------------------------------1
1-1-2 光催化氧化法--------------------------------------------------2
1-1-3 超聲波氧化法 --------------------------------------------------4
1-1-4 電化學氧化法----------------------------------------------------4
1-2 催化溼室氧化法-------------------------------------------------------7
1-2-1 濕式氧化法原理------------------------------------------------7
1-2-2 溼式氧化動力----------------------------------------------------9
1-2-3 溼式氧化產物--------------------------------------------------10
1-2-4 影響溼式氧化的操作因子-----------------------------------11
1-3 電解-電透析方法(前處理)------------------------------------------15
1-3-1 電解-電透析裝置---------------------------------------------15
1-3-2 電解-電透析影響因子---------------------------------------16
1-3-3 電解-電透析流程---------------------------------------------16
1-4 彩色濾光片的應用及原理------------------------------------------18
1-4-1 TFT-LCD 簡介---------------------------------------------------18
1-4-2 彩色濾光片製程-------------------------------------------------19
1-5 研究動機--------------------------------------------------------------21
第二章 實驗部份
2-1 實驗與分析之藥品--------------------------------------------------22
2-1-1 原廢液----------------------------------------------------------25
2-2 實驗裝置及分析儀器-----------------------------------------------25
2-2-1 濕式氧化實驗裝置--------------------------------------------25
2-2-2 分析裝置--------------------------------------------------------28
2-3 實驗原理--------------------------------------------------------------28
2-4 實驗操作程序--------------------------------------------------------28
2-5 實驗項目及分析方法----------------------------------------------31
2-5-1 分析項目--------------------------------------------------------31
2-5-2 操作參數--------------------------------------------------------31
2-6 分析方法--------------------------------------------------------------31
2-7 尋求最適催化系統--------------------------------------------------35
第三章 結果與討論
3-1 彩色濾光片玻璃基板強鹼廢液分析-----------------------------39
3-2 操作條件的影響-----------------------------------------------------39
3-2-1 催化劑之選定-------------------------------------------------41
3-2-2 攪拌速率對氧化效果的影響--------------------------------47
3-2-3 反應溫度對氧化效果的影響--------------------------------50
3-2-4 改變觸媒添加量對氧化效果的影響------------------------54
3-2-5 通入氧氣壓力對氧化效果的影響 ------------------------58
3-3 以多段方式去除Pco2 的影響--------------------------------------61
3-4 觸媒再次使用效果--------------------------------------------------67
第四章 結論---------------------------------------------------70
第五章 參考文獻----------------------------------------------72
參考文獻 [1]. 呂冠霖,司洪濤 “氧化技術在高濃度COD廢水處理之應用” 經濟部工業局綠色技術平台之廢水防治。
[2]. 陳以航,“彩色濾光片玻璃機板再生製程強鹼染料廢液之催化溼式氧化處理”,國立中央大學化學工程與材料工程研究所碩士論文(2007).
[3]. Weirong Zhao, Zhongbiao Wu, Dahui Wang, “Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution” , Journal of Hazardous Materials B137,pp.1859–1865 (2006).
[4]. Hisahiro Einaga , Shigeru Futamura “Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolite”, Catalysis Communications 8 , pp557–560, (2007).
[5]. N. Guettaı‥, H. Ait Amar ,“Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension.Part I: Parametric study” Desalination 185 ,pp. 427–437(2005).
[6]. Parag R. Gogate, Aniruddha B. Pandit , “A review of imperative technologies for wastewater treatment II: hybrid methods”, Advances in Environmental Research 8 ,pp.553–597(2004).
[7]. 王晓宇,卞华松,张国莹. 上海环境科学, 21(6),pp. 334~337(2002).
[8]. R. Mecozzi, L. Di Palma , D. Pilone, L. Cerboni “Use of EAF dust as heterogeneous catalyst in Fenton oxidation of PCP contaminated wastewaters“, Journal of Hazardous Materials B137, pp.886–892 (2006).
[9]. Gorte, R. J. et al., “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon” ,Journal of Power Sources ,pp 106(1-2) (2002).
[10]. V. Lo’pez-Grimau *, M.C. Gutie’rrez “Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light” , Chemosphere 62 , pp.106–112(2006).
[11]. Mantzavinos, Dionissios; Hellenbrand, Rolf; Livingston, Andrew G.; Metcalfe, Ian S. Catalytic wet oxidation of p-coumaric acid: Partial oxidation intermediates, reaction pathways and catalyst leaching,Applied Catalysis B, Environmental Volume: 7, Issue: 3-4, January 18, pp. 379-396(1996)
[12]. Verenich, S.; Laari, A.; Kallas, J.“Wet oxidation of concentrated wastewaters of paper mills for water cycle closing” Waste Management Volume: 20, Issue: 4, July, pp. 287-293(2000)
[13]. Li L ,Chen P. , Gloyna E.F. “Generalized Kinetic Model for wet oxidation of organic compounds” , AICHE J., Vol.37, pp.1687 (1991)
[14]. M.J Dietrich,T.L.Randall,and P.J. Canney, “Wet Air Oxidation of Hazardous Organicity in wastewater” Environment Progress, Vol.4,NO.3, pp.171-177 (1985).
[15]. S. Imamura, and D. Akira, “Wet Oxidation of Amoonia Catalyzed by cerium based composite oxides ”Ind. Eng. Cnem. Prod. Res. Dev. ,Vol24 ,NO.1, pp.75-80(1985).
[16]. Ning Li, Claude Descorme *, Miche`le Besson,“Catalytic wet air oxidation of aqueous solution of 2-chlorophenol over Ru/zirconia catalysts”,Applied Catalysis B: Environmental 71 , pp.262–270, (2007).
[17]. 賴俊谷“以溼式氧化法處理2,4二氯酚水溶液之研究”中華民國環境工程學會第二十四屆廢水處理技術研討會論文集, pp.335-340,(1999).
[18]. Qiang Wu, Xijun Hu, Po-lock Yue “Kinetics study on catalytic wet air oxidation of phenol” ,Chemical Engineering Science 58 , pp. 923 – 928,(2003).
[19]. Mantzavinos D., R. Hellenbrand, A. G. Livingston, I. S. Metcalfe , Applied “Catalytic wet oxidation of p-coumaric acid: Partial oxidation intermediates, reaction pathways and catalyst leaching” Catalysis B: Environmental 7 ( 1996).
[20]. Verenich S., A. Laari, J. Kallas, “Wet oxidation of concentrated wastewaters of paper mills for water cycle closing” Waste Management 20 (2000).
[21]. Y. Ka-cara, E. Alpayb, V.K. Ceylan, “Pretreatment of Afyon alcaloide factory’s wastewater by wet air oxidation(WAO)” Water Research 37 , pp.1170-1176(2003).
[22]. Kolaczkowskia S.T., P. Plucinskia, F.J. Beltranb, F.J. Rivasa, D.B. McLurgha, “Wet air oxidation : a review of process technologies and aspects in reactor design” Chemical Engineering Journal 73 (1999)
[23]. Luck F. “Wet air oxidation : past , present and future”, Catalysis Today 53 pp.81-91 (1999)
[24]. 陳益滽,張藝,詹文碩,楊永明,戴寶通“廢溶劑回收系統於TFT-LCD製造廠之應用” 奈米通訊 ,(2005.5)
[25]. 陳鈺坤“面板的轉運-彩色濾光片”產經資訊2004-19期,p.36~p.42
[26]. Hamoudi S.,Larachi F.,Sayari A.,“Wet Oxidation of Phenolic solutions over Heterogeneous Catalysts:Dgradation profile and catalyst behavior” Journal of catalysis 177,pp.247-258,(1998)
[27]. 行政院環境保護署。修訂以公告無機水質檢測方法,EPA-87-1302-03-01 計畫報告,(1998.6)
[28]. 水中化學需氧量檢測方法─密閉迴流滴定法,中華民國88年4月8日環署檢字第21288號公告,自中華民國88年7月8日起實施,NIEA W517.50B
[29]. Jean-Christophe B.,Michele B. Pierre G.“Catalytic Wet Air Oxidation of carboxylic acids on TiO2-supported ruthenium catalysts” Journal of catalysis 182,129-135,(1999)
[30]. S. verenich, A. Larri, J. Kallas “Wet oxidation of concentrated wastewaters of paper mills for water cycle closing” waste management 20,pp287-293,(2000)
[31]. Dionissios Mantzavinos, Rolf Hellenbrand, Andrew G. Livingston,Ian S. Metcafe “Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching” Applied catalysis B: environmental 7, pp379-396,(1996)
[32]. J. Mikulova,S. Rossignol, J. Barbier Jr.,D. Mesnard, C. Kappenstein,D. Duprez “Ruthenium and platinum catalysts supported on Ce,Zr,Pr-O mixed oxides prepared by soft chemistry for acetic acid wet air oxidation” Applied catalysis B :Environmental 72,pp1-10,(2007)
[33]. Chowdhury A.K.,Copa W.C. “ Wet Air Oxidation of Toxic and hazardous organic industrial wastewater ” Indian Chemical engineer, Vol.28 , NO.3, pp3-11 (1996).
[34]. A. Fortuny, J. Font, A. Fabregat “Wet air oxidation of phenol using active carbon as catalyst” Applied catalysis B: environmental 19,pp.165-173(1998).
[35]. A. Santos, P. Yustos , A. Quintanilla, G. Ruiz, F. Garcia-Ochoa “Study of the copper leaching in the wet oxidation of phenol” Applied catalysis B: Environmental 61, pp.323-333(2005).
[36]. Sang-Kyung Kim, Kyoung-Hum Kim , Son-ki Ihm“The characteristics of wet air oxidation of phenol over CuOx/Al2O3” Chemosphere 68 ,pp287-292,(2007).
[37]. Wan T.-T., Yang W.-C. “Factors affecting the current and the voltage efficiencies of the synthesis of quaternary ammonium hydroxides by electrolysis-electrodialysis ” Chemical Engineering Journal(2000)
[38]. S.H. Lin , S. J. Ho “Catalytic wet-air oxidation of high strength industrial wastewater” Applied Catalysis B: Environmental 9, pp.133-147 (1996)
[39]. S.H. Lin and S. J. Ho “Treatment of high-strength industrial wastewater by wet air oxidation-A case study ” Waste management, Vol.17, No.1, pp.71-78, 1997
指導教授 王天財(Ten-Tsai Wang) 審核日期 2008-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明