參考文獻 |
[1] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[3] M. Haruta, “When gold is not noble: catalysis by nanoparticles,” The Chemical Record 3 (2003) 75-87.
[4] A. Schulz, M. Hargittai, “Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules,” AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I),” Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides,” CATTECH 6 (3) (2002) 102-115.
[6] C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation,” Appl. Catal. A: Gen. 332 (2007) 216-224.
[7] C. Mohr, P. Claus, “Hydrogenation properties of supported nanosized gold particles,” Sci. Prog. 84 (2001) 311-334.
[8] P. G. N. Mertens, F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I. F. J. Vankelecom, D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances,” Appl. Catal. A: Gen. 325 (2007) 130-139.
[9] P. G. N. Mertens, H. Poelman, X. Ye, I. F. J. Vankelecom, P. A. Jacobs, D.E. De VOS, “Au0 nanocolloids as recyclable quasihomogeneous metal catalysts in the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols,” Catal. Today 122 (2007) 352-360.
[10] P. G. N. Mertens, J. Wahlen, X. Ye, H. Poelman, D. E. De VOS, “Chemoselective C=O hydrogenation of α,β-unsaturated carbonyl compounds over quasihomogeneous and heterogeneous nano-Au0 catalysts promoted by lewis acidity,” Catal. Lett. 118 (2007) 15-21.
[11] A. G. Sault ,R. J. Madix, C. T. Campbell, “Adsorption of oxygen and hydrogen on Au(110)-(1 × 2),” Surf. Sci. 169 (1986) 347-356.
[12] Ph. Buffet, J-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A, 13 (1976) 2287-2298.
[13] G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenateon,” Gold Bull. 6 (1976) 102-105.
[14] W. C. Li, M. Comotti, F. Schüth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation,” J. Catal. 237 (2006) 190-196.
[15] S. Ivanova, V. Pitchon, “A new preparation method for the formation of gold nanoparticles on an oxide support,” Appl. Catal. A: Gen. 267 (2004) 191-201.
[16] V. Ponec, G. C. Bond, “Catalysis by metals and alloys,” Elsevier, Amsterdam, 1996.
[17] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity,” Appl. Clay Sci. 18 (2001) 17-27.
[18] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成還己酮之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[19] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[20] U. Costantino, F. Marmottini, M. Sisani, T. Montanari, G. Ramis, G. Busca, M. Turco, G. Bagnasco, “Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol,” Solid State Ion. 176 (2005) 2917-2922.
[21] G. Busca, U. Costantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari, G. Ramis, “Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts,” Appl. Catal. A: Gen. 310 (2006) 70–78.
[22] F. Cavani, F. Trifiro, A. Vacari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catal. Today. 11 (1911) 173-301.
[23] A. Corma, V. Fornes, F. Rey, “Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol,” J. Catal. 148 (1994) 205-212.
[24] N.Bejoy, “Hydrotalcite: The clay that cures,” Resonance, February (2001) 57-61.
[25] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals,” J. Catal. 94 (1985) 547-577.
[26] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[27] A. L. McKenzie , C. T. Fishel, T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite,” J. Catal. 138 (1992) 547-561.
[28] D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini,E. Farronn, “Textural properties and catalytic activity of hydrotalcite,” J. Catal. 151 (1995) 50-59.
[29] C. P. Keikar, and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization,” Microporous Material 10 (1997) 163-172.
[30] A. Corma, V. Fornes, R. M. Martin-Aranda, F. Rey, “Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate,” J. Catal. 134 (1992) 58-65.
[31] R. A. V. Santan, M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity,” Catal. Rev.-Sci. Eng. 37 (4) (1995) 557-698.
[32] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhamedzhanova, L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions,” React. Kinet. Catal. Lett. 33 (1987) 399-403.
[33] G. Cordier, Y. Colleuille, P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), Editions du CNRS, Paris, (1984) 349.
[34] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[35] A. Giroir-Fendler, D. Richard, and P. Gallezot, in Heterogeneous Catalysis and Fine chemicals, Studies in Surface science amd Catalysis Vol.41, Elsevier, Amsterdam, (1988) 171.
[36] M. A. Vannice, B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum,” J. Catal. 115 (1989) 65-78.
[37] H. Yoshitake, Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts,” J. Chem. Soc., Faraday Trans. 88 (3) (1992) 503-510.
[38] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[39] M. Consonni, D. Jokic, D. Yu Murzin, R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde,” J. Catal. 188 (1999) 165-175.
[40] A. Grioir-Fendler, D. Richard, P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology,” Catal. Lett. 5 (1990) 175-181.
[41] M. Englisch, A. Jentys, J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2,” J. Catal. 166 (1997) 25-35.
[42] M. Englisch, V. S. Ranade, J. A. Lercher, “Liquid Phase Hydrogenation of crotonaldehyde over Pt/SiO2,” Appl. Catal. A: Gen. 163 (1997) 111-122.
[43] M. Abid, V. Paul-Boncour, R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states,” Appl. Catal. A: Gen. 297 (2006) 48-59.
[44] F. Delbecq, P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaterated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach,” J. Catal. 152 (1995) 217-236.
[45] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[46] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[47] N. Mahata, F. Goncalves, M. Fernando, R. Pereira, J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[48] V. Satagopan, S. B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ,” J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[49] W. Koo-Amornpattana, J. M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde,” Catal. Today 66 (2001) 277-287.
[50] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Yu. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Yzeolite catalysts for selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 251 (2003) 385-396.
[51] M. Shirai, T. Tanaka, M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen,” J. Mol. Catal. A-Chem. 168 (2001) 99-103.
[52] M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras, F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium,” J. Catal. 172 (1997) 46-54.
[53] I. Kun, G. Szöllösi, M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts,” J. Mol. Catal. A-Chem. 169 (2001) 235-246.
[54] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D. Yu. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite,” J. Mol. Catal. A-Chem. 217 (2004) 145-154.
[55] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Yu. Murzin,I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde,” App. Catal. A: Gen. 251 (2003) 385-396.
[56] S. Mukherjee, M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects,” J. Catal. 243 (2006) 108-130.
[57] J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru, “Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst,” J. Phys Chem. B 104 (2000) 11153-11156.
[58] M. Okumura, T. Akita, M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today 74 (2002) 265-269.
[59] J. E. Bailie, G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,” Chem. Commun. (1999) 2151.
[60] S. Schimpf, M. Lucas, C. Mohr., U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions,” Catal.Today 72 (2002) 63-78.
[61] C. Mohr, H. Hofmeister, P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86-94.
[62] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N. V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts,” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[63] R. Zanella, C. Louis, S. Giorgio, R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism,” J. Catal. 223 (2004) 328-339.
[64] B. Campo, C. Petit, M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts,” J. Catal. 0 (2007) 1-8.
[65] E. Bus, R. Prins, J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts,” Catal. Commun. 8 (2007) 1397-1402.
[66] C. Mohr, H. Hofmeister, J. Radnik, P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein,” J. Am. Chem. Soc. 125 (2003) 1905-1911.
[67] J. Radnik, C. Mohr, P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis,” Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[68] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts,” Catal. Today 122 (2007) 341-351.
[69] B. Campo, M. Volpe, S. Ivanova, R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts,” J. Catal. 242 (2006) 162-171.
[70] W. T. Reichle, S. Y. Kang, D. S. Everhardt, “The nature of the thermal decomposition of a catalytically active anionic clay mineral,” J. Catal. 101 (1986) 352-359.
[71] M. Haruta, “Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications,” Gold Bull. 37 (2004) 27–36.
[72] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,” J. Catal. 231 (2005) 105-114.
[73] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A. V. Dorsselaer, E. Leize, “Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry,” Appl. Catal. A: Gen. 298 (2006) 203-210.
[74] R. J. H. Grisel, C. J. Weststrate, A. Goossens, M. W. J. Crajé, A. M. van der Kraan, B. E. Nieuwenhuys, “Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment,” Catal. Today 72 (2002) 123-132.
[75] 江淑媜, “奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇性氫化反應之研究” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[76] P. Maki-Arvela, J. Hajek, T. Salmi, D.Yu. Murzin, “Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts-a review”, Appl. Catal. A: Gen. 292 (2005) 1–49.
[77] R. A. Rajadhyaksha, S. L. Karwa, “Solvent effects in catalytic hydrogenation,” Chem. Eng. Sci. 41(7) (1986) 1765-1770.
[78] G. F. Santori, M. L. Casella, O. A. Ferretti, “Hydrogenation of carbonyl compounds using tin-modified platinum-based catalysts prepared via surface organometallic chemistry on metals (SOMC/M),” J. Mol. Catal. A-Chem. 186 (2002) 223–239.
[79] R. L. Augustine, “Selective heterogeneously catalyzed hydrogenations,” Catal. Today 37 (1997) 419-440. |