博碩士論文 953204031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:167 、訪客IP:3.145.39.52
姓名 游焜竣(Kun-Jyun You)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Au/MgxAlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究
(Selective hydrogenation of α,β-unsaturated aldehydes on Au/MgxAlO-hydrotalcite catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用沉積沉澱法,以MgxAlO-hydrotalcite為擔體,不預先調整金溶液pH值,將擔體緩慢置入金溶液中,利用擔體本身鹼性特質,提升溶液pH值,製備具高活性的金觸媒,用於α,β-不飽和醛選擇性氫化反應研究。
以肉桂醛選擇性氫化反應,探討擔體Mg/Al莫耳比、擔體煅燒溫度、及觸媒煅燒溫度等製備變因。在Mg/Al = 2、擔體與觸媒煅燒溫度100°C下,可製得活性與不飽和醇選擇率最佳的2%Au/Mg2AlO觸媒。由TEM、ICP、XPS鑑定分析得知,MgxAlO擔體具有穩定金顆粒之功能,除了金沉積量外,觸媒活性主要決定於Au3+/Au0比值,Au3+/Au0比值越高,觸媒活性與不飽和醇選擇率越好。催化反應中,2%Au/Mg2AlO觸媒對不飽和醛共軛C=C/C=O鍵中C=O鍵有良好的選擇性氫化效果,以2-己烯醛為反應物,2-己烯醇產率為76%;以肉桂醛為反應物,肉桂醇產率達到84%;以檸檬醛為反應物,橙花醇與香葉醇產率高達98%。
以肉桂醛、檸檬醛、2-己烯醛、巴豆醛等反應物探討反應物分子大小與結構對2%Au/Mg2AlO觸媒催化活性與選擇率之影響。催化活性方面,不同於一般金屬觸媒催化,2%Au/Mg2AlO觸媒對大分子不飽和醛催化活性較小分子好,活性依序為肉桂醛 > 檸檬醛 > 2-己烯醛 > 巴豆醛。選擇率方面,也不同於一般立體障礙效應,C=C鍵旁有較大立體障礙的肉桂醛,其不飽和醇選擇率反不及檸檬醛;較小立體障礙之巴豆醛反應中,不飽和醇依然為主要產物。
以最佳製備條件之2%Au/Mg2AlO觸媒於肉桂醛氫化反應中探討促進劑之添加、反應溫度、反應總壓、反應溶劑之影響。添加鐵及鋅於2%Au/Mg2AlO觸媒,皆能促進觸媒催化活性與不飽和醇選擇率。反應溫度越高,不但反應速率越快,不飽和醇選擇率也提升。反應總壓越高,反應速率越快,但不影響不飽和醇選擇率。溶劑效應中,不同於一般金屬催化,2%Au/Mg2AlO觸媒於非極性溶劑有利於肉桂醛氫化反應活性,但不利於肉桂醇選擇率,活性大小依序為環已烷 ≈ 正己烷 > 乙醇;肉桂醇選擇率依序為乙醇 > 環己烷 ≈ 正己烷。直鏈醇類的碳數增加,有利於反應活性,大小依序為正戊醇 > 正丁醇 > 正丙醇 > 乙醇 > 甲醇,肉桂醇選擇率則相當。
摘要(英) Gold was dispersed on a solid base of MgxAlO (x = Mg/Al molar ratio) hydrotalcite using a modified deposition precipitation method to obtain a good catalyst for selective hydrogenation of α,β-unsturated aldehydes. In the modified deposition precipitation method, MgxAlO suspended in water was added to the gold solution without adjusting the pH value of the initial solution.
The effect of various parameters that are involved in the preparation of catalysts were examined by the hydrogenation of cinnamaldehyde, including the Mg/Al molar ratio and the calcination temperature of the MgxAlO support as well as the calcination temperature of 2%Au/MgxAlO catalyst. The catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses. The optimal catalyst, 2%Au/Mg2AlO(100), was obtained using the following preparation parameters: Mg2AlO (Mg/Al = 2) calcined at 100°C as a support and 2%Au/Mg2AlO catalyst calcined at 100°C. This investigation confirms that not only gold loading of the catalyst is important, the ratio of gold states (Au3+/Au0) is also critical in determining the activity of the catalyst and the selectivity of cinnammyl alcohol.
The 2%Au/Mg2AlO catalyst display a high chemoselectivity in the hydrogenation α,β-unsaturated aldehydes to unsaturated alcohols. A good yield of cinnammyl alcohol of about 84% from the hydrogenation of cinnamaldehyde and a high yield of nerol/geraniol of about 98% from the hydrogenateon of citral were obtained over the 2%Au/Mg2AlO catalyst. Many catalytic behaviors of 2%Au/Mg2AlO catalyst of selective hydrogenation of α,β-unsturated aldehydes are different from conventional hydrogenation catalysts (Pt, Ru, Ni, etc.)
關鍵字(中) ★ 菱水鎂鋁石
★ 不飽和醛
★ 選擇性氫化
★ 金觸媒
關鍵字(英) ★ hydrotalcite
★ unsaturated aldehyde
★ selective hydrogenation
★ gold catalyst
論文目次 摘 要 -----------------i
Abstract -----------------iii
誌 謝 -----------------iv
目 錄 -----------------v
圖 目 錄 -----------------ix
表 目 錄 -----------------xii
第一章 緒論 -----------------1
第二章 文獻回顧 -----------------4
2-1 金觸媒的發展史 -----------------4
2-2 金觸媒的製備方式 -----------------5
2-2-1 含浸法(Impregnation) -----------------5
2-2-2 共沉澱法(Coprecipitation) -----------------7
2-2-3 沉積沉澱法(Deposition-precipitation) --------7
2-2-4 其他方法 -----------------9
2-3 MgxAlO-hydrotalcite 擔體 -----------------11
2-3-1 MgxAlO-hydrotalcite 結構性質 -----------------11
2-3-2 MgxAlO-hydrotalcite 之製備 -----------------12
2-3-3 MgxAlO-hydrotalcite 熱處理前後之性質 --------13
2-3-4 MgxAlO-hydrotalcite 觸媒酸鹼性質 --------14
2-4 α,β-不飽和醛選擇性氫化反應 -----------------15
2-4-1 第八族過渡金屬 -----------------16
2-4-2 鉑金屬觸媒 -----------------17
2-4-2-(a) 擔體效應 -----------------17
2-4-2-(b) 金屬顆粒大小之影響 -----------------19
2-4-2-(c) 促進劑之影響 -----------------21
2-4-2-(d) 溶劑效應 -----------------22
2-4-3 金觸媒 -----------------23
第三章 實驗方法與設備 -----------------28
3-1 MgxAlO-hydrotalcite擔體之製備 -----------------28
3-2 Au/MgxAlO-hydrotalcite 觸媒之製備 -----------29
3-3 擔體與觸媒性質鑑定 -----------------31
3-3-1 元素組成分析(ICP) -----------------31
3-3-2 熱重分析儀(TGA) -----------------31
3-3-3 X-射線繞射分析(XRD) -----------------32
3-3-4 比表面積測定(BET) -----------------32
3-3-5 X-射線光電子光譜(XPS) -----------------33
3-3-6 穿透式電子顯微鏡(TEM) -----------------34
3-4 反應活性測試 -----------------35
3-5 實驗藥品及氣體 -----------------39
第四章 結果與討論 -----------------42
4-1 Au/MgxAlO-hydrotalcite 於肉桂醛選擇性氫化反應 --42
4-1-1 活性測試前之質傳限制探討 -----------------43
4-1-2 觸媒製備條件篩選 -----------------46
4-1-2-(a) 擔體Mg/Al莫耳比例之篩選與鑑定分析 ------------46
4-1-2-(b) 擔體煅燒溫度之篩選與鑑定分析 ------------52
4-1-2-(c) 觸媒煅燒溫度之篩選與鑑定分析 ------------59
4-1-2-(d) 觸媒還原前處理之影響 -----------------70
4-1-2-(e) 金負載量之影響 -----------------72
4-1-3 添加促進劑之影響 -----------------75
4-1-4 反應條件之影響 -----------------79
4-1-4-(a) 壓力效應 -----------------79
4-1-4-(b) 溫度效應 -----------------82
4-1-4-(c) 溶劑效應 -----------------84
4-2 2%Au/Mg2AlO觸媒於α,β-不飽和醛選擇性氫化 ------------88
4-2-1 檸檬醛選擇性氫化反應 -----------------88
4-2-2 巴豆醛選擇性氫化反應 -----------------93
4-2-3 2-己烯醛選擇性氫化反應 -----------------96
4-2-4 反應物分子大小與立體障礙效應 -----------------98
第五章 結論 -----------------103
總 結 -----------------105
參考文獻 -----------------106
附錄一 -----------------113
附錄二 -----------------114
參考文獻 [1] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[3] M. Haruta, “When gold is not noble: catalysis by nanoparticles,” The Chemical Record 3 (2003) 75-87.
[4] A. Schulz, M. Hargittai, “Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules,” AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I),” Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides,” CATTECH 6 (3) (2002) 102-115.
[6] C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation,” Appl. Catal. A: Gen. 332 (2007) 216-224.
[7] C. Mohr, P. Claus, “Hydrogenation properties of supported nanosized gold particles,” Sci. Prog. 84 (2001) 311-334.
[8] P. G. N. Mertens, F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I. F. J. Vankelecom, D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances,” Appl. Catal. A: Gen. 325 (2007) 130-139.
[9] P. G. N. Mertens, H. Poelman, X. Ye, I. F. J. Vankelecom, P. A. Jacobs, D.E. De VOS, “Au0 nanocolloids as recyclable quasihomogeneous metal catalysts in the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols,” Catal. Today 122 (2007) 352-360.
[10] P. G. N. Mertens, J. Wahlen, X. Ye, H. Poelman, D. E. De VOS, “Chemoselective C=O hydrogenation of α,β-unsaturated carbonyl compounds over quasihomogeneous and heterogeneous nano-Au0 catalysts promoted by lewis acidity,” Catal. Lett. 118 (2007) 15-21.
[11] A. G. Sault ,R. J. Madix, C. T. Campbell, “Adsorption of oxygen and hydrogen on Au(110)-(1 × 2),” Surf. Sci. 169 (1986) 347-356.
[12] Ph. Buffet, J-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A, 13 (1976) 2287-2298.
[13] G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenateon,” Gold Bull. 6 (1976) 102-105.
[14] W. C. Li, M. Comotti, F. Schüth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation,” J. Catal. 237 (2006) 190-196.
[15] S. Ivanova, V. Pitchon, “A new preparation method for the formation of gold nanoparticles on an oxide support,” Appl. Catal. A: Gen. 267 (2004) 191-201.
[16] V. Ponec, G. C. Bond, “Catalysis by metals and alloys,” Elsevier, Amsterdam, 1996.
[17] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity,” Appl. Clay Sci. 18 (2001) 17-27.
[18] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成還己酮之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[19] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[20] U. Costantino, F. Marmottini, M. Sisani, T. Montanari, G. Ramis, G. Busca, M. Turco, G. Bagnasco, “Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol,” Solid State Ion. 176 (2005) 2917-2922.
[21] G. Busca, U. Costantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari, G. Ramis, “Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts,” Appl. Catal. A: Gen. 310 (2006) 70–78.
[22] F. Cavani, F. Trifiro, A. Vacari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catal. Today. 11 (1911) 173-301.
[23] A. Corma, V. Fornes, F. Rey, “Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol,” J. Catal. 148 (1994) 205-212.
[24] N.Bejoy, “Hydrotalcite: The clay that cures,” Resonance, February (2001) 57-61.
[25] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals,” J. Catal. 94 (1985) 547-577.
[26] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[27] A. L. McKenzie , C. T. Fishel, T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite,” J. Catal. 138 (1992) 547-561.
[28] D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini,E. Farronn, “Textural properties and catalytic activity of hydrotalcite,” J. Catal. 151 (1995) 50-59.
[29] C. P. Keikar, and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization,” Microporous Material 10 (1997) 163-172.
[30] A. Corma, V. Fornes, R. M. Martin-Aranda, F. Rey, “Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate,” J. Catal. 134 (1992) 58-65.
[31] R. A. V. Santan, M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity,” Catal. Rev.-Sci. Eng. 37 (4) (1995) 557-698.
[32] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhamedzhanova, L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions,” React. Kinet. Catal. Lett. 33 (1987) 399-403.
[33] G. Cordier, Y. Colleuille, P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), Editions du CNRS, Paris, (1984) 349.
[34] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[35] A. Giroir-Fendler, D. Richard, and P. Gallezot, in Heterogeneous Catalysis and Fine chemicals, Studies in Surface science amd Catalysis Vol.41, Elsevier, Amsterdam, (1988) 171.
[36] M. A. Vannice, B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum,” J. Catal. 115 (1989) 65-78.
[37] H. Yoshitake, Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts,” J. Chem. Soc., Faraday Trans. 88 (3) (1992) 503-510.
[38] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[39] M. Consonni, D. Jokic, D. Yu Murzin, R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde,” J. Catal. 188 (1999) 165-175.
[40] A. Grioir-Fendler, D. Richard, P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology,” Catal. Lett. 5 (1990) 175-181.
[41] M. Englisch, A. Jentys, J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2,” J. Catal. 166 (1997) 25-35.
[42] M. Englisch, V. S. Ranade, J. A. Lercher, “Liquid Phase Hydrogenation of crotonaldehyde over Pt/SiO2,” Appl. Catal. A: Gen. 163 (1997) 111-122.
[43] M. Abid, V. Paul-Boncour, R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states,” Appl. Catal. A: Gen. 297 (2006) 48-59.
[44] F. Delbecq, P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaterated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach,” J. Catal. 152 (1995) 217-236.
[45] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[46] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[47] N. Mahata, F. Goncalves, M. Fernando, R. Pereira, J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[48] V. Satagopan, S. B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ,” J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[49] W. Koo-Amornpattana, J. M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde,” Catal. Today 66 (2001) 277-287.
[50] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Yu. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Yzeolite catalysts for selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 251 (2003) 385-396.
[51] M. Shirai, T. Tanaka, M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen,” J. Mol. Catal. A-Chem. 168 (2001) 99-103.
[52] M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras, F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium,” J. Catal. 172 (1997) 46-54.
[53] I. Kun, G. Szöllösi, M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts,” J. Mol. Catal. A-Chem. 169 (2001) 235-246.
[54] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D. Yu. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite,” J. Mol. Catal. A-Chem. 217 (2004) 145-154.
[55] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Yu. Murzin,I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde,” App. Catal. A: Gen. 251 (2003) 385-396.
[56] S. Mukherjee, M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects,” J. Catal. 243 (2006) 108-130.
[57] J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru, “Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst,” J. Phys Chem. B 104 (2000) 11153-11156.
[58] M. Okumura, T. Akita, M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today 74 (2002) 265-269.
[59] J. E. Bailie, G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,” Chem. Commun. (1999) 2151.
[60] S. Schimpf, M. Lucas, C. Mohr., U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions,” Catal.Today 72 (2002) 63-78.
[61] C. Mohr, H. Hofmeister, P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86-94.
[62] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N. V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts,” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[63] R. Zanella, C. Louis, S. Giorgio, R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism,” J. Catal. 223 (2004) 328-339.
[64] B. Campo, C. Petit, M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts,” J. Catal. 0 (2007) 1-8.
[65] E. Bus, R. Prins, J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts,” Catal. Commun. 8 (2007) 1397-1402.
[66] C. Mohr, H. Hofmeister, J. Radnik, P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein,” J. Am. Chem. Soc. 125 (2003) 1905-1911.
[67] J. Radnik, C. Mohr, P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis,” Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[68] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts,” Catal. Today 122 (2007) 341-351.
[69] B. Campo, M. Volpe, S. Ivanova, R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts,” J. Catal. 242 (2006) 162-171.
[70] W. T. Reichle, S. Y. Kang, D. S. Everhardt, “The nature of the thermal decomposition of a catalytically active anionic clay mineral,” J. Catal. 101 (1986) 352-359.
[71] M. Haruta, “Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications,” Gold Bull. 37 (2004) 27–36.
[72] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,” J. Catal. 231 (2005) 105-114.
[73] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A. V. Dorsselaer, E. Leize, “Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry,” Appl. Catal. A: Gen. 298 (2006) 203-210.
[74] R. J. H. Grisel, C. J. Weststrate, A. Goossens, M. W. J. Crajé, A. M. van der Kraan, B. E. Nieuwenhuys, “Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment,” Catal. Today 72 (2002) 123-132.
[75] 江淑媜, “奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇性氫化反應之研究” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[76] P. Maki-Arvela, J. Hajek, T. Salmi, D.Yu. Murzin, “Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts-a review”, Appl. Catal. A: Gen. 292 (2005) 1–49.
[77] R. A. Rajadhyaksha, S. L. Karwa, “Solvent effects in catalytic hydrogenation,” Chem. Eng. Sci. 41(7) (1986) 1765-1770.
[78] G. F. Santori, M. L. Casella, O. A. Ferretti, “Hydrogenation of carbonyl compounds using tin-modified platinum-based catalysts prepared via surface organometallic chemistry on metals (SOMC/M),” J. Mol. Catal. A-Chem. 186 (2002) 223–239.
[79] R. L. Augustine, “Selective heterogeneously catalyzed hydrogenations,” Catal. Today 37 (1997) 419-440.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明