博碩士論文 953204033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.224.53.73
姓名 彭均婷(Chun Ting)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 CuO/Ce1-xMnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究
(CuO/Ce1-xMnxO2-Al2O3 catalysts for the preferential oxidation of CO in H2-rich gases)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究嘗試於CeO2引入不同比例的Mn,製備Ce1-xMnxO2擔體及CuO/Ce1-xMnxO2觸媒。為了增進觸媒之機械強度與穩定度,另外於Ce1-xMnxO2¬擔體中引入不等量Al2O3與製備CuO/Ce1-xMnxO2-Al2O3觸媒。本研究分別探討CuO/Ce1-xMnxO2觸媒與CuO/Ce1-xMnxO2-Al2O3觸媒之CO選擇性氧化反應特性,並採用BET、TPR、XPS、Raman、CO脈衝吸附與Auger等分析方法探討觸媒之物理特性與表面性質。CO/O/H2/He = 1/1/50/48進料及F/W = 10,000 ml hr-1 g-1下,進行CuO/Ce1-xMnxO2-Al2O3觸媒的活性測試。
CeO2擔體中引入少量的錳(x = 0.1~0.3),錳是以正四價的形式固溶於CeO2擔體晶格中,形成良好固溶的氧化物Ce1-xMnxO2,Ce1-xMnxO2氧化物較易釋出晶格氧,有較佳redox特性。當錳的引入量大於0.3,會有分離相的產生,錳是以三價的形式存在。
7%CuO/Ce1-xMnxO2觸媒,引入少量Mn (x = 0.1),觸媒活性增加,達CO完全轉化的T100下降5°C (90~95°C),此時選擇S100約為100%;Mn引入量0.20.5時,則不利於觸媒活性。反應溫度小於100°C,選擇率均維持100%,反應溫度大於100°C,選擇率始明顯下降。
7%CuO/Ce1-xMnxO2-20%Al2O3觸媒與未引入Al2O3之觸媒相較,其T100大約上升5~10°C。Mn的引入量x = 0.1~0.2,T100為95~100°C與未引入Mn之觸媒相較,下降5°C;x = 0.3,T100為100~105°C,與未引入之Mn之觸媒T100相當。Mn引入量對7%CuO/Ce1-xMnxO2與7%CuO/ Ce1-xMnxO2-20%Al2O3之影響相似。
7%CuO/Ce0.9Mn0.1O2-x%Al2O3觸媒,Al2O3引入量x = 10~30%,觸媒活性差異不大,T100溫度95~100°C,Al2O3引入量大於30%,才稍不利於CO選擇性氧化反應。Al2O3引入量x = 40%時,T100溫度略升 5°C,溫度為100~105°C,選擇率由100%下降至95%。
CO2及H2O對 7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒明顯影響,於進料氣中引入15% CO2,T100明顯增至130~135°C,S100下降至71%;於進料中引入10% H2O,會造成觸媒床堵塞,以致無法順利進行。若以無CO2及H2O的進料在100°C下進行7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒的穩定性測試,經200小時反應,轉化率由100%僅降至93%。7%CuO/ Ce0.9Mn0.1O2-20%Al2O3觸媒有強吸水性,不適用於燃料電池的CO去除反應,但仍適用於一般的CO氧化反應上。
摘要(英) Abstract
In our previous studies, doping MnOx into CeO2 increase the mobility of lattice oxygen and enhanced the activity of the activity of the 7%CuO/Ce1-xMnxO2 catalyst in the selective oxidation of CO in the H2-rich feed. In order to promote of mechanical strength and the stability of support, moreover to Alumina was incorporated with the solid solution of Ce1-xMnxO2 to form Ce1-xMnxO2-Al2O3 mixed oxides, by the suspension /co-precipitation method, to be used as supports ofCuO/Ce1-xMnxO2-Al2O3 catalyst. They were characterized and effects of Al2O3 on the selective oxidation of CO in excess hydrogen were examined. Characterization of catalysts were performed by XRD, TPR, XPS, Auger. All catalysts were reduced to room temperature in helium and then the feed H2/CO/O2/He(50/1/1/48) mixed was diverted to the reactor at a flow rate of 30ml/ min (F/W = 10,000ml/g h).
For Ce1-xMnxO2 with x = 0.1~0.3, incorporating an appropriate amount of Mn4+ into the CeO2 lattice to form a solid solution facilitated the release of the bulk lattice oxygen. Some MnOx might aggregate and be split out from the solid solution of Ce1-xMnxO2 as the fraction of Mn incorporated excess 0.3, and then Mn3+ into the CeO2.
7%CuO/Ce0.9Mn0.1O2 catalyst was the most active one, it was more active than the 7%CuO/CeO2 catalyst, with a T100 temperature (90-95°C) for complete conversion that was above 5°C less than that of 7%CuO/CeO2 (95-100°C) and the selective oxidation of CO was still 100%. The promotion of CO oxidation became weaker as the fraction of Mn incorporated increase above 0.5.
For doping appropriate small friction as the amount of Mn about o.1 into the Ce1-xMnxO2 for 7%CuO/Ce0.9Mn0.1O2-x%Al2O3 catalysts. This interfacial perimeter also decreased as the amount of Al2O3 incorporated into Ce0.9Mn0.1O2-x%Al2O3 increased above 30%, so that CO oxidation became weaker.
Because a gas stream from reformer always contains CO2 and H2O, so that a catalyst of selective oxidation of CO must be resistant to both CO2 and H2O. The 7%CuO/Ce1-xMnxO2-20%Al2O3 catalyst rose by about 35°C from 95-100°C to 130-135°C when an H2-rich feed in presence of 15%CO2. The 7%CuO/Ce1-xMnxO2-20%Al2O3 created the catalyst bed to stop up and reaction can not finish, so that the catalyst had the hygroscopicity. A long (200 h) run over the 7%CuO/Ce0.9Mn0.1O2-20%Al2O3 catalyst was conducted at 100°C, with about 93% conversion; the performance was stable when the feed no CO2 and H2O.
關鍵字(中) ★ 含浸法
★ 富氫中CO氧化
關鍵字(英) ★ MnOx
★ CeO2
★ TPR
論文目次 目 錄
摘 要 i
Abstract iii
誌 謝 v
目 錄 vi
圖 目 錄 ix
表 目 錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2-1 燃料電池的發展背景 3
2-2 CO選擇性氧化觸媒 5
2-2-1 Au觸媒 5
2-2-2 Pt觸媒 6
2-2-3 Rh、Ru觸媒 8
2-2-4 CuO觸媒 9
2-3 CeO2擔體與CuO-CeO2觸媒 11
2-4 CexZr1-xO2共氧化物與CuO/CexZr1-xO2觸媒 15
2-5 CexSn1-xO2共氧化物與CuO/CexSn1-xO2觸媒 17
2-6 Ce1-xMnxO2共氧化物 18
第三章 實驗方法與設備 20
3-1 Ce1-xMnxO2-Al2O3擔體之製備 20
3-2觸媒製備 20
3-3氫-程溫還原 (H2-TPR) 21
3-4脈衝式CO吸附 22
3-5全表面積量測 23
3-6 X-射線繞射分析(XRD) 24
3-7顯微拉曼光譜儀 24
3-8 X-射線光電子光譜(XPS) 25
3-9元素組成分析(ICP) 26
3-10 CuO/Ce1-xMnxO2-Al2O3於富氫下CO選擇性氧化反應研究 27
3-11 CO2與H2O影響實驗 28
3-12 轉化率與選擇率之計算 28
3-13 使用藥品 31
第四章 結果與討論 32
4-1 Ce1-xMnxO2、Ce1-xMnxO2-Al2O3擔體之製備與鑑定 32
4-1-1 ICP元素組成分析及BET比表面積測量 32
4-1-2 XRD結構分析 33
4-2擔體與觸媒表面性質分析 36
4-2-1氫程溫還原(TPR) 36
4-2-2脈衝式CO吸附 37
4-2-3 觸媒XPS表面分析 40
4-2-4 擔體結構之拉曼(Raman)分析 43
4-3富氫中的CO選擇性氧化反應 45
4-3-1 7%CuO/Ce1-xMnxO2觸媒之CO選擇性氧化反應 45
4-3-2 CuO/Ce1-xMnxO2-x%Al2O3觸媒之CO選擇性氧化反應 50
4-3-2-(a) Mn引入量的影響 50
4-3-2-(b) Al2O3引入量的影響 53
4-3-2-(c) CuO負載量的影響 56
4-3-2-(d) F/W質流比的影響 59
4-3-2-(e) CO2與H2O的影響 62
4-3-2-(f) 200小時反應穩定性測試 65
結 論 66
總 結 67
參考文獻 68
圖 目 錄
圖2-1 CuO/CeO2 之結構示意圖 13
圖2-2 CuO與CeO2擔體行CO氧化協同作用模式 14
圖2-3 A possible structur of Ce0.5Zr0.5O2 16
圖3-1 氫氣程溫還原裝置圖 22
圖3-2 脈衝式CO吸附裝置圖 25
圖3-3 CO選擇性氧化反應實驗裝置示意圖 29
圖3-4 CO2與H2O引入之實驗裝置示意圖 30
圖4-1 Ce1-xMnxO2擔體之X-ray繞射光譜圖 34
圖4-2 x%CuO/Ce0.9Mn0.1O2觸媒之X-ray繞射光譜圖 35
圖4-3 Ce1-xMnxO2擔體之H2-TPR圖譜 38
圖4-4 7%CuO/Ce1-xMnxO2觸媒之H2-TPR圖譜 39
圖4-5 7%CuO/Ce1-xMnxO2觸媒之XPS圖譜 41
圖4-6 7%CuO/Ce1-xMnxO2觸媒之Auger圖譜 42
圖4-7 Ce1-xMnxO2擔體之Raman譜圖 44
圖4-8(a) 7%CuO/Ce1-xMnxO2觸媒於CO選擇性氧化反應之轉化率 48
圖4-8(b) 7%CuO/Ce1-xMnxO2觸媒於CO選擇性氧化反應之選擇率 49
圖4-9(a) 7%CuO/Ce1-xMnxO2-20%Al2O3觸媒於CO選擇性氧化反應之轉化率 51
圖4-9(b) 7%CuO/Ce1-xMnxO2-20%Al2O3觸媒於CO選擇性氧化反應之選擇率 52
圖4-10(a) 7%CuO/Ce0.9Mn0.1O2-x%Al2O3觸媒於CO選擇性氧化反應之轉化率 54
圖4-10(b) 7%CuO/Ce0.9Mn0.1O2-x%Al2O3觸媒於CO選擇性氧化反應之選擇率 55
圖4-11(a) x%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應之轉化率 57
圖4-11(b) x%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應之選擇 58
圖4-12(a) 不同F/W對7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應轉化率之影響 60
圖4-12(b) 不同F/W對7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應選擇率之影響 61
圖4-13(a) CO2與H2O對7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應轉化率之影響 63
圖4-13 (b) CO2與H2O對7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒於CO選擇性氧化反應選擇率之影響 64
圖4-14 7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒200 h穩定性測試之CO轉化率 65
參考文獻 參考文獻
[1] 鄭耀宗,科學發展,367期,2003年7月。
[2] 陳翰全,「CuO/Ce1-xZrxO2觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國93年。
[3] 黃振瑋,「CuO/Ce1-xSnxO2觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
[4] X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene,” Chem. Eng. J xxx (2008) xxx.
[5] X. Tang, Y. Li, X. Huang, “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde :Effect of preparation method and calcinations temperature,” Appl. Catal. B:62 (2006) 265-273.
[6] M. Haruta, N. Yamada, T. Kobayashi, S.J. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal. 115 (1989) 301-309.
[7] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[8] M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36 (1997) 153-166.
[9] M. Harut, M. Date, “Advances in the catalysis of Au nanoparticles,” Appl. Catal. A: Gen. 222 (2001) 427-437.
[10] F. Boccuzzi, A. Cgiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta, “Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation,” J. Catal. 202 (2001) 256-267.
[11] M. Haruta,S. Tsubota, T. Kobayashi, H. Kageyama,M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[12] A. Luengnaruemitchai, S. Osuwan, E. Gulari, “Selective catalytic oxidation of CO in the presence of H2 over gold catalystInt,” J. Hydrogen Energ. 29 (2004)429-435.
[13] G. K. Bethke, H. H. Kung, “Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts,” Appl. Catal. A: Gen. 194 (2000) 43-53.
[14] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q. A. Pankhurst, F. E. Wangner, R. R. Rajaram, S. E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation,” Catal. Today 72 (2002) 133-144.
[15] M. Brown, A. Green, US Patent 3,088,919,1963.
[16] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, “Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3,” J. Catal. 171 (1997) 93-105.
[17] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite,” Appl. Catal. A: Gen. 159 (1997) 159-169.
[18] A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications,” Appl. Catal. B: Environ. 37 (2002) 17-25.
[19] X. Liu, O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalystAppl.,” Catal. A: Gen. 226 (2002) 293-303.
[20] A. Sirijaruphan, J.G. Goodwin, “Effect of Fe promotion on the surface reaction parameters of Pt/γ -Al2O3 for the selective oxidation of CO,” J. Catal, 224 (2004) 304-313.
[21] I. Hyuk Son, “Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases,” J. P. S. 159 (2006) 1266-1273.
[22] T. Ince, G. Uysal, A. Nilgun Akın, R. Yıldırım, “Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams,” Appl. Catal. A: Gen. 292 (2005) 171-176.
[23] J.L. Ayastuy, M.P. Gonzalez-Marcos, J.R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, “MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams,” Appl. Catal. B: Environ. 70(2007) 532-541.
[24] J.L. Ayastuy, A. Gil-Rodriguez, M.P. Gonzalez-Marcos, M.A. Gutierrez-Ortiz, “Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction,” I. J. H. Eng 31 (2006) 2231-2242.
[25] J.L. Ayastuy, M.P. Gonzalez-Marcos, A. Gil-Rodrıguez, J.R. Gonzalez-Velasco, M.A.Gutierrez-Ortiz,“Selective CO oxidation over CexZr1-xO2-supported Pt catalysts,” Catal. Today 116 (2006) 391-399.
[26] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,“ J. Catal., 144 (1993) 175-192.
[27] G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen,” J. Batistac, Catal. Today 75 (2002) 157-167.
[28] H. Tanaka, S.I. Ito, S. Kameoka, “Promoting effect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts,” K. Tomishige, K. Kunimori, Catal. Commum. 4 (2003) 1-4.
[29] H. Tanaka, S. I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, “Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen,” Appl. Catal. A: Gen. 250 (2003) 255-263.
[30] S.I. , H. Tanaka, S. Kameoka, Y. Minemura, K. Tomishige, “Selective CO oxidation in H2-rich gas over K2CO3-promoted Rh/SiO2 catalysts: effects of preparation methodK. Kunimori,” Appl. Catal. A: Gen. 273 (2004) 295-302.
[31] Y. Ono, M. Shibata, T. Inui, “Non-linear change in oxidation state of Cu during Co oxidation on supported copper catalysts measured by the forced-oscillating reaction method,” J. Mol. Catal. A-Chem 153 (2000) 53-62.
[32] Y. Liu, Q. Fu, M. F. Stephanopoulos, “Preferential oxidation of CO in H2 over CuO-CeO2 catalysts ,” Catal. Today 93 (2004) 241-246.
[33] W. Liu, M. F. Stephanopoulos, “Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : I. Catalyst Composition and Activity,” J. Catal. 153 (1995) 304-316.
[34] W. Liu, M. F. Stephanopoulos, “Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : II. Catalyst Characterization and Reaction-Ki,” J. Catal. 153 (1995) 317-332.
[35] W.P. Dow, T.J. Huang, “Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst,” J. Catal. 147 (1994) 322-332.
[36] 林聖欽,「以觸媒在富氫下行一氧化碳選擇性氧化」,清大碩士論文(2000).
[37] C.Y. Shiau, M.W. Ma, C.S. Chuang, “CO oxidation over CeO2-promoted Cu/γ-Al2O3 catalyst: Effect of preparation method,” Appl. Catal. A: Gen. 301 (2006) 89-95.
[38] E. Aneggi, J. Liorca, M. Boaro, A. Trovarelli, “Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders,” J. Catal. 234 (2005) 88-95.
[39] K. Zhou, X. Wang, X. Sun, Q. Peng, “Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planesY. Li,” Appl. Catal. A:Gen 229 (2005) 206-212.
[40] H.C. Yao, Y.F. Yu Yao, “Ceria in automotive exhaust catalysts : I. Oxygen storage,” J. Catal. 86 (1984) 254-265.
[41] S.J. Scgmieg, D.N. Belton, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive cataly,” Appl. Catal. B: Environ. 6 (1995) 127-144.
[42] K.C. Taylor, Catal. Rev.-Sci. Eng. 35 (1993) 457.
[43] M.F. Luo, Y.J. Zhong, X.X. Yuan, X.M. Zheng, Appl. Catal, 162(1997)121.
[44] B. Skaman, D. Grandjean, R. E. Benfield, A. Hinz, A. Andersson , L.R. Wallenberg, “Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction,” J. Catal. 211 (2002) 119-133.
[45] A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J.M. Coronado, “Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts J.A. Anderson,” J. Catal,195 (2000) 207-216.
[46] M. Ozawa, C.K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts,” Catal. Today 50 (1999) 329-342.
[47] M. Daturi, E. Finocchio, C. Binet, J.C. Lavalley, F. Fally, V. Perrichon, J. Phys. Chem. B 103 (1999) 329
[48] R. Di Monte, G.R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties,” J. Catal. 151 (1995) 168-177.
[49] P. Fornasiero, E. Fonda, R.D. Monte, G. Vlaic, J. Ka par, M. Graziani, “Relationships between Structural/Textural Properties and Redox Behavior in Ce0.6Zr0.4O2 Mixed Oxides,” J. Catal. 187 (1999) 177-185.
[50] A. M. Arias, M.F.Garcia, J. Soria, J.C. Conesa, “Spectroscopic Study of a Cu/CeO2 Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen,” J. Catal. 182 (1999) 367-377.
[51] G. Vlaic, R. Di Monte, P. Fornasiero, J. Kašpar, M. Graziani, “Redox Property-Local Structure Relationships in the Rh-Loaded CeO2-ZrO2 Mixed Oxides,” J. Catal. 182 (1999) 378-389
[52] C. Descorme, Y. Madier, D. Duprez, “Infrared Study of Oxygen Adsorption and Activation on Cerium–Zirconium Mixed Oxides,” J. Catal. 196 (2000) 167-173.
[53] G. Balducci, P. Fornasiero, “An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures R. Di Monte, J. Kaspar, S. Meriani,” Catal. Lett. 33 (1995) 193.
[54] R. Lin, Y. J. Zhong, M.F. Luo, W. P. Liu, Indian J. Chem. 40A (2001) 36.
[55] R. Lin, M.F. Luo, Y.J. Yan, G.Y. Liu, W.P. Liu, “Comparative study of CuO/Ce0.7Sn 0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation,” Appl. Catal. A: Gen. 255 (2003) 331-336.
[56] H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition-activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation,” Appl. Catal. B: Environ. 32 (2001) 195-204.
[57] G. Qi, R. T. Yang, “Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst,” J. Catal. 217 (2003) 434-441.
[58] B. Murugan, A.V., “Ramaswamy, Nature of Manganese Species in Ce1-xMnxO2- Solid Solutions Synthesized by the Solution Combustion Route,” Chem. Mater 17(2005)3983-3993
[59] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明