參考文獻 |
Chapter 1
1. S. Kraljevic, P. J. Stambrook, and K. Pavelic, Accelerating drug discovery,” EMBO reports, 5(9), 837-842 (2004).
2. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, “The price of innovation: new estimates of drug development costs,” J. Health Econ., 22(2), 151-185 (2003).
3. M. S. Lipsky, MD, and L. K. Sbarp, “From idea to market: the drug approval process,” JABFP., 14(5), 362-367 (2001).
4. A. Mehta, “Birth of a drug,” Mod. Drug Discovery., 7, 37-42 (2004).
5. J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm. Tech., 30(8), 24-32 (2005).
6. T. O’Toole, “Hearing on project bioshield reauthorization issues,” http://www.upmc-biosecurity.org/website/resources/hearings/content/Hearings_2006/20060406bioshldreauth.pdf.
7. T. Lee and F. B. Hsu, “A cross-performance relationship between Carr’s index and dissolution rate constant: the study of acetaminophen batches,” Drug Dev. Ind. Pharm., 33(11), 1273 -1284 (2007).
8. P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006).
9. D. Singhal, and W. Curatolo, “Drug polymorphism and dosage form design: a practical perspective,” Adv. Drug Deliv. Rev., 56(3), 335-347 (2004).
10. J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
11. W. H. DeCamp, “The impact of polymorphism on drug development: a regulator’s viewpoint,” Am. Pharm. Rev., 4(3), 70-77 (2001).
12. Rahul Banerjee, Prashant M. Bhatt, Nittala V. Ravindra, and Gautam R. Desiraju, “Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities,” Cryst. Growth Des., 5(6), 2299-2309 (2005).
13. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic compound of species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
14. A. Somogyi, F. Bochner, and D. Foster, “Inside the isomers: the tale of chiral switches,” Aust. Prescr., 27(2), 47-49 (2004).
15. T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and enantiomers of ketoprofen: phase diagram, thermodynamic studies, skin permeability, and use 16. S. L. Morissette, Ö Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug Deliv. Rev., 56(3), 275-300 (2004).
17. E. D. Carlson, P. Cong, W. H. Chandler Jr., P. J. Desrosiers, C. J. Freitag, and J. F. Varni, “Apparatuses and methods for creating and testing pre-formulations and systems for same,” United States Patent, 6939515 (2005).
Chapter 2
1. A.W. Newman and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discovery Today, 8(19), 898-905 (2003).
2. S. Pfeffer-Hennig, P. Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-chemical characterization of an active pharmaceutical ingredient,” J. Therm. Anal. Calorim., 77(2), 663-679 (2004).
3. L. Yu, S. M. Reutzel and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT, 1(3), 118-127 (1998).
4. D. Giron, “Contribution of thermal methods and related techniques to the rational development of pharmaceuticals—part 1,” PSTT, 1(5), 191-199 (1998).
5. Sophie-Dorothée Clas, C. R. Dalton, and B. C. Hancock, “Differential scanning calorimetry: applications in drug development,” PSTT, 2(8), 311-320 (1999).
6. T. L. Threlfall, “Analysis of organic polymorphs: a review,” The analyst, 120(10), 2435-2460 (1995).
7. D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvate,” Thermochim. Acta, 248(2), 1-59 (1995).
8. G. W. H. Höhne, W. F. Hemminger, and H. -J. Flammersheim, “Types of differential scanning calorimeters and modes of operation,” Ch 2 in Differential scanning calorimetry, 2nd Ed., (Springer, New York, USA, 2003), P. 12.
9. T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (R,S)-(±)-sodium ibuprofen dihydrate,” Pharm. Tech., 31(6), 82-87 (2007).
10. L. E. Mcmahon, P. Timmins, A. C. Williams, and P. York, “Characterization of dihydrates prepared from carbamazepine polymorphs,” J. Pharm. Sci., 85(10), 1064-1069 (1996).
11. A. J. C. Cabeza, G. M. Day, W. D. S. Motherwell, and W. Jones, “Solvent inclusion in form II carbamazepine,” Chem. Commun., 2007(16), 1600- 1602 (2007).
12. S. A. Kustrin, V. W. T. Rades, D. Saville, and I. G. Tucker, “Powder diffractometric assay of two polymorphic forms of ranitidine hydrochloride,” Int. J. Pharm., 184(1), 107-114 (1999).
13. T. C. Huang, “Automatic x-ray single crystal structure analysis system for small molecule,” The Rigaku J., 21(2), 43-46 (2004).
14. Y. Zhang and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 61(9), m435-m438 (2005).
15. L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom refinement of (S)-(+)-ibuprofen,” Acta Crystallogr. Sect. E: Struct. Rep. Online, 59(9), o1357-o1358 (2003).
16. L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom refinement of (S)-(+)-ibuprofen. corrigendum,” Acta Crystallogr. Sect. E: Struct. Rep. Online, 62(7), e17-e18 (2006).
17. C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental methods in X-ray and neutron crystallography,” Ch 5 in Fundamentals of crystallography, 2nd Ed., (Oxford university press, 2002), p. 336.
18. R. Potter, “An X-ray single-crystal linear diffractometer,” J. Sci Instrum., 39, 379-380 (1962).
19. D. A. Skoog, F. J. Holler, and T. A. Nieman, “An introduction to infrared spectrometry,” Ch 16 in Principles of instrumental analysis, 5th Ed., (Thomson Learnin, USA, 2001), pp. 382-383.
20. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, 5th Ed., (Thomson Learnin., USA, 2001) pp.182-183, 396.
21. D. E. Bugay, “Characterization of the solid-state: spectroscopic techniques,” Adv. Drug Delivery Rev., 48(1), 43-65 (2001).
22. T. Bruzzese, and R. Ferrari, “Method of relieving pain and treating inflammatory conditions in warm-blooded animals,” United States Patent, 4279926 (1981).
23. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp720-730.
24. K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Ch 3 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp. 413-423.
25. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Handbook, 2nd Ed., (Marcel Dekker, Inc., New York, USA, 1997), pp. 659-661.
Chapter 3
1. T. Togkalidou, R. D. Braatz, and B. K. Johnson, O. Davidson, and A. Andrews, “Experimental design and inferential modeling in pharmaceutical crystallization,” AIChE J., 47(1), 160-168 (2001).
2. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
3. N. Blagden and R. J. Davey, “Polymorph selection: challenges for the future?,” Cryst. Growth Des., 3(6), 873-885 (2003).
4. D. Winn and M. F. Doherty, “Modeling crystal shapes of organic materials grown from solution,” AIChE J., 46(7), 1348-1367 (2000).
5. M. Fujiwara, Z. K. Nagy, J. W. Chew, and R. D. Braatz, “First-principles and direct design approaches for the control of pharmaceutical crystallization,” J. Process Contr., 15(5), 493-504 (2005).
6. S. N. Bhattachar, L. A. Deschenesa, and J. A. Wesleya, “Solubility: it's not just for physical chemists,” Drug Discovery Today, 11(21-22), 1012-1018 (2006).
7. G. Granero, María M. de Bertorello, and M. C. Brinñón, “Solubility profiles of some isoxazolyl–naphthoquinone derivatives,” Int. J. Pharm., 190(1), 41-47 (1999).
8. M. Fujiwara, P. S. Chow, D. L. Ma, and R. D. Braatz, “Crystallization using laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration, and control,” Cryst. Growth Des., 2(5), 363-370 (2002).
9. N. Kubota, “A new interpretation of metastable zone widths measured for unseeded solutions,” J. Cryst. Growth., 310(3), 629-634 (2008).
10. W. Mullin, “Solutions and solubility,” Ch 3 in Crystallization, 3rd Ed., (Butterworth-Heinemann, Oxford, UK, 1992), pp. 117-118.
11. P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of crystal habit on the compression anddensification mechanism of ibuprofen,” J. Crys. Growth., 243(2), 345-355 (2002).
12. N. Rasenack and B. W. Müller, “Ibuprofen crystals with optimized properties,” Int. J. Pharm., 245(1-2), 9-24 (2002).
13. N. Rasenack and B. W. Müller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
14. H. A. Garekani, F. Sadeghi, A. Badiee, S. A. Mostafa, and A. R. Rajabi-Siahboomi, “Crystal habit modifications of ibuprofen and their physicomechanical characteristics,” Drug Dev. Ind. Pharm., 27(8), 803-809 (2001).
15. A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
16. D. Gao and J. H. Rytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
17. C. J. Strachan, T. S. Rades, D. A. Newnham, K. C. Gordon, M. Pepper, and P. F. Taday, “Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials,” Chem. Phys. Lett., 390(1-3), 20-24 (2004).
18. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates,” Thermochim. Acta, 248, 1-59 (1995).
19. L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. H. Jr., Y. Y. Chiu, and A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications,” Pharm. Res., 20(4), 531-536 (2004).
20. C. Rustichelli, G. Gamberini, V. Ferioli, M. C. Gamberini, R. Ficarra, and S. Tommasini, “Solid-state study of polymorphic drugs: carbamazepine,” J. Pharm. Biomed. Anal., 23(1), 41-54 (2000).
21. T. Threlfall, “Crystallisation of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
22. T. Lee, and Y. S. Lin, “Dimorphs of Sucrose,” Int. Sugar J., 109(1303), 440-445 (2007).
23. D. Singhal and W. Curatolo, “Drug polymorphism and dosage form design: a practical perspective,” Adv. Drug Deliv. Rev., 56(3), 335-347 (2004).
24. C. Sun and D. J. W. Grant, “Influence of crystal structure on the tableting properties of sulfamerazine polymorphs,” Pharm. Res., 18(3), 274-280 (2004).
25. B. C. Hancock, P. York, and R. C. Rowe, “The use of solubility parameters in pharmaceutical dosage form design,” Int. J. Pharm., 148(1), 1-21 (1997).
26. J. Breitkreutz, “Prediction of intestinal drug absorption properties by three-dimensional solubility parameters,” Pharm. Res., 15(9), 1370-1375 (1998).
27. J. Burke, “Solubility Parameters: Theory and Application,” AIC book and paper group annual, 3, P13-58 (1984).
28. G. Leising, R. Resel, F. Stelzer, S. Tasch, A. Lanziner, and G. Hantich, “Physical aspects of dexibuprofen and racemic ibuprofen,” J. Clin. Pharmacol., 36(12 Suppl), 3S-6S (1996).
29. S. T. Kaehler, W. Phleps, and E. Hesse, “Dexibuprofen: pharmacology, therapeutic, use and safety,” Inflammopharmacology, 11(4-6), 371-383 (2003).
30. N. G. Anderson, “Solvent selection,” Ch 4 in Practical process research & development, (Academic press, New York, 2000), pp. 81-111.
31. L. C. Garzón, and F. Martínez, “Temperature dependence of solubility for ibuprofen in some organic and aqueous solvents,” J. Sol. Chem., 33(11), 1379-1395 (2004).
32. J. W. Mullin, “Solutions and solubility,” Ch 3 in Crystallization, 3rd Ed., (Butterworth-Heinemann, Oxford, UK, 1992), p. 93.
33. Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by "tailor-made" inhibitors; a new probe to fine intermolecular interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
34. J. M. E. Buyan, N. Shankland, and D. B. Sheen, “Solvent effects on the crystal habit of ibuprofen,” J. Pharm. Sci., 58 1505-1509 (1969).
35. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl, “Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (±)-ibuprofen,” J. Pharm. Sci., 93(3), 654-666 (2004).
36. I. Ludlam-Brown and P. York, “The crystalline modification of succinic acid by variations in crystallization conditions,” J. Phys. D Appl. Phys., 26(8B), B60-B65 (1993).
Chater 4
1. P. H. Stahl, and B. Sutter, “Salt selection,” Ch 12 in Polymorphism in the pharmaceutical industry, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006), pp 309-310.
2. C. Sun and, D. J. W. Grant, “Compaction properties of L-Lysine salts,” Pharm. Res., 18(3), 281-286 (2001).
3. R. J. Bastin, M. J. Bowker, and B. J. Slater, “Salt selection and optimisation procedures for pharmaceutical new chemical entities,” Org. Proc. Res. Dev., 4(5), 427 -435 (2000).
4. K. R. Morris, M. G. Fakes, A. B. Thakur, A. W. Newman, A. K. Singh, J. J. Venit, C. J. Spagnuolo, and A. T. M. Serajuddin, “An integrated approach to the selection of optimal salt form for a new drug candidate,” Int. J. Pharm., 105(1), 209-217 (1994).
5. J. F. Remenar, J. M. MacPhee, B. K. Larsin, V. A. Tyagi, J. H. Ho, D. A. Mcllroy, M. B. Hickey, P. B. Shaw, and Ö. Almarson. “Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: the case of sertraline,” Org. Proc. Res. Dev., 7(6), 990-996 (2003).
6. R. Banerjee, P. M. Bhatt, N. V. Ravindra, and G. R. Desiraju, “Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities,” Cryst. Growth Des., 5(6), 2299-2309 (2005)
7. B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of S-sodium ibuprofen,” United States Patent, 6242000 B1 (1997).
8. S. M. Berge, L. Bighley, and D. C. Monkhouse, “Pharmaceutical salts,” J. Pharm. Sci., 66(1), 1-19 (1977)
9. P. L. Gould, “Salt selection for basic drugs,” Int. J. Pharm., 33(3), 201-217 (1986).
10. C. A. Hirsch, R. J. Messenger, and J. L. Brannon, “Fenoprofen: drug form selection and preformulation stability studies,” J. Pharm. Sci., 67(2), 231-236 (1987).
11. H. S. Gwak, J. S. Choi, and H. K. Choi, “Enhanced bioavailability of piroxicam via salt formation with ethanolamines,” Int. J. Pharm., 297(1-2), 156-161 (2005).
12. S. Li, S. M. Wing, S. Sethia, H. Almoazen, Y. M. Joshi, and A. T. M. Serajuddin, “Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH,” Pharm. Res., 22(4), 628-635 (2005).
13. K. Kawakani, Y. Ida, and T. Yamaguchi, “Effect of salt type on hygroscopicity of a new cephalosporin S-3578,” Pharm. Res., 22(8), 1365-1373 (2005).
14. G. L. Endgel, N. A. Farid, M. M. Faul, L. A. Richardon, and L. L. Winneroski, “Salt form selection and characterization of LY333531 mesylate monohydrate,” Int. J. Pharm., 198(2), 239-247 (2000).
15. S. C. Ward, M. B. Hursthouse, D. C. Woods, and S. M. Lewis, “Systematic study into the salt formation of functionalized organic substrates,” http://eprints.soton.ac.uk/15855/01/all-hands-2003.pdf.
16. . P. Desrosiers et al, “High throughput screening techniques for preformulation: salt selection and polymorph studies,” Acta Cryst., A58(Supplement), C9 (2002).
17. A. van Langevelde, and E. Blomsma, “High-throughput screening in solid form selection,” Acta Cryst., A58(Supplement), C9 (2002).
18. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. “High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug. Deliv. Rev., 56(3), 275-300 (2004).
19. E. H. Kerns, “High throughput physicochemical profiling for drug discovery,” J. Pharm. Sci., 90(11), 1838-1858 (2001).
20. E. C. Ware, and D. R. Lu, “An automated approach to salt for new unique trazodone salts,” Pharm. Res., 21(1), 177-184 (2004).
21. A. V. Trask, D. A. Haynes, W. D. S. Motherwell, and W. Jones, “Screening for crystalline salts via mechanochemistry,” Chem. Comm., (1), 51-53 (2006).
22. L. Kumar, A. Amin, and A. K. Bansal, “An overview of automated systems relevant in pharmaceutical salt screening,” Drug Discovery Today, 12(23-24), 1046-1053 (2006).
23. A. T. M. Serajuddin, “Salt formation to improve drug solubility,” Adv. Drug Deliv. Rev., 59(7), 603-616 (2007).
24. S. N. Black, E. A. Collier, R. J. Davey, and R. J. Roberts, “Structure, solubility, screening, and synthesis of molecular salts,” J. Pharm. Sci., 96(5), 1053-1068 (2007).
25. S. T. Kaehler, W. Phleps, and E. Hesse, “Dexibuprofen: pharmacology, therapeutic, use and safety,” Inflammopharmacology, 11(4-6), 371-383 (2003).
26. T. Lee, Y. H. Chen, and Y. W. Wang, “Effects of homochiral molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen dihydrate on the crystallization kinetics of racemic (R,S)-(±)-sodium ibuprofen dihydrate,” Cryst. Growth Des., 8(2), 415-426 (2008).
27. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J.W. Grant, “Racemic species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
28. G. Geisslinger, K. Dietzel, H. Bezler, B. Nuernberg, and K. Brune, “Therapeutically relevant differences in the pharmacokinetical and pharmaceutical behavior of ibuprofen lysinate as compared to ibuprofen acid,” Int. J. Clin. Pharmacol. Ther. Toxicol., 27(7), 324-328 (1989).
29. B. Sádaba, M. A. Campanero, M. J. Muñoz-Juarez, I. Gil-Aldea, E. García-Quetglas, A. Esteras, and J. R. Azanza, “A comparative study of the pharmacokinetics of ibuprofen arginate versus dexibuprofen in healthy volunteers,” Eur. J. Clin. Pharmacol., 62(10), 849-854 (2006).
30. T. T. Kararli, T. E. Needham, C. J. Seul, and P. M. Finnegan, “Solid-state interaction of magnesium oxide and ibuprofen to form a salt,” Pharm. Res., 6(9), 804-808 (1989).
31. L. C. Garzón1 and F. Martínez, “Temperature dependence of solubility for ibuprofen in some organic and aqueous solvents,” J. Solution Chem., 33(11), 1379-1395 (2004).
32. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
33. H. Dyrsting, K. Torben, “Drug salts,” United States Patent, 6077822 (2000).
34. C. F. Salat, J. F. Batlles, and J. C. Riera, “Tris (hydroxymethyl) aminomethane salt of thioctic acid,” United States Patent, 3718664 (1973).
35. K. Terashima, S. Kageyama, and H. Katsuyama, “Integral multilayer analytical element for use in the measurement of alkaline phosphatase activity,” United States Patent, 4900665 (1990).
36. A. F. M. Barton, “Solvent Scales,” Ch 8 in CRC Handbook of Solubility Parameters and other Cohesion Parameters, 2nd Ed., (CRC Press, Boston, USA, 1991) pp. 294-295.
37. M. Klenell, P. Snoeijs, and M. Pedersén, “Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane,” Hydrobiologia, 514(1-3), 41-53 (2004).
38. T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” Pharm. Tech., 30(10), 72-92 (2006).
39. S. Kim, C. Wei, and S. Kiang, “Crystallization process development of an active pharmaceutical ingredient and particle engineering via the use of ultrasonics and temperature cycling,” Org. Proc. Res. Dev., 7(6), 997-1001 (2003).
40. L. M. Oberoi, K. S. Alexander, and A. T. Riga, “Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients,” J. Pharm. Sci., 94(1), 93-101 (2005).
41. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Amines, C=N, and N=O compounds,” Ch 11 in Introduction to infrared and raman spectroscopy, 3rd Ed., (Axademic Press Inc., San Diego, CA, 1990), pp. 339-343.
42. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Ethers, alcohols, and phenols,” Ch 10 in Introduction to infrared and raman spectroscopy, 3rd Ed, (Axademic Press Inc., San Diego, CA, 1990), p333.
43. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl compounds,” Ch 9 in Introduction to infrared and raman spectroscopy, 3rd Ed, (Axademic Press Inc., San Diego, CA, 1990), p318.
44. Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by “tailor-made” inhibitors; a new probe to fine intermolecular interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
45. T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (R,S)-(±)-sodium ibuprofen dihydrate,” Pharm. Tech., 31(6), 82-87 (2007).
46. G. G. Z. Zhang, S. Y. L. Paspal, R.Suryanaryanan, and D. J. W. Grant, “Racemic Species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
47. S. N. Bhattachar, L. A. Deschenes, and J. A. Wesley, “Solubility: it’s not just for physical chemists,” Drug Discovery Today, 11(21-22), (2006).
48. Z. T. Chowhan, “pH-solubility profiles of organic carboxylic acids and their salts,” J. Pham. Sci., 67(9), 1257-1260 (1978).
49. R. K. KhanKari and D. J. W. Grant, “Pharmaceutical hydrate,” Thermochim. Acta 248, 61-79 (1995).
50. Y. Zhang and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C61(9), m435-m438 (2005). |