參考文獻 |
C. Han, and B. Wang, “Factors That Impact The Developability of Drug Candidates: An Overview,” Chapter 1 in Drug Delivery: Principles and Applications, edited by B. Wang, T. Siahaan, and R. Soltero, (John Wiley and Sons, Inc., New York, USA, 2005), pp. 1-5.
K. Sweeny, “Technology Trends in Drug Discovery and Development: Implications for the Development of the Pharmaceutical Industry in Australia,” Draft Working Paper No. 3, Pharmaceutical Industry Project, CSES, Victoria University, Melbourne, pp. 1-29 (2002).
http://www.msd.com.hk/health_info/drug_education/e_ddp_introduction.html
M. Brigell, C. J. Dong, S. Rosolen, and R. Tzekov, “An Overview of Drug Development with Special Emphasis on The Role of Visual Electrophysiological Testing,” Documenta Ophthalmologica., 110(1), 3-13 (2005).
O. Almarsson, and M. J. Zaworotko, “Crystal Engineering of the Composition of Pharmaceutical Phases. Do Pharmaceutical Co-crystals Present a New Path to Improved Medicines? ” Chem. Commun.,17, 1889-1896 (2004)
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
J. Berstein, R. J. Davey, and H. Jan-Olav, “Concomitant Polymorphs,” Angew.
Chem. Int. Ed., 38(23), 3440-3461 (1999).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),” Sci. Tech. Adv. Matt., 5(3), 331-337 (2004).
A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films,” Nanoletters, 5(10), 1924-1930 (2005).
K.J. Kim, and H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng. Technol., 28(8), 946 -951 (2005).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic Acid, p-Hydroxyphenylacetic acid, p-Aminophenylacetic Acid, p-Hydroxybenzoic acid, and Ibuprofen in Pure Solvents,” J. Chem. Eng. Data., 47(6), 1379-1383 (2002).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
W. L. McCabe, J. C. Smith, and P. Harriott, “Crystallization”, Chapter 27 in Unit Operations of Chemical Engineering.” Sixth edition, Mc Graw-Hill, pp902-942,(2001)
A. Goldszal, and J. Bousquet, “Wet Agglomeration of Powders: From Physics toward Process Optimization,” Pow. Tech., 117(3), 221-231 (2001).
T. Lee, and F. B. Hsu, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
T. Lee, H. J. Hou, H. Y. Hsieh, Y. C. Su, Y. W. Wang, and F. B. Hsu, “The Prediction of the Dissolution Rate Constant by Mixing Rules: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 34(5) , 522-535 (2008).
D. Amaro-Gonza´lez, and B. Biscans, “Spherical Agglomeration during Crystallization of an Active Pharmaceutical Ingredient,” Powder Technol., 128(2), 188-194 (2002).
M. Maghsoodi, O. Taghizadeh, G. P. Martin, and A. Nokhodchi, “Particle Design of Naproxen-Disintegrant Agglomerates for Direct Compression by a Crystallo-co-Agglomeration Technique,” Int. J. Pharm., 351(1), 45-54 (2007).
Y. Kawashima, M. Okumura, and A. H. Takenaka, “Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals during Crystallization,” Science, 216(4550), 1127-1128 (1982).
Y. Kawashima, T. Handa, H. Takeuchi, M. Okumura, H. Katou, and O. Nagata, “Crystal Modification of Phenytoin with Polyethylene Glycol for Improving Mechanical Strength Dissolution Rate and Bioavailability by a Spherical Crystallization Technique,” Chem. Pharm. Bull., 34(8), 3376-3383 (1986).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by Spherical Crystallization Technique. V. Improvement of Dissolution and Bioavailability of Direct Compressed Tablets Prepared Using Tolbutamide Agglomerated Crystals,” Chem. Pharm. Bull., 40(11), 3030-3035 (1992).
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
A. Ribardie`re, P. Tchoreloff, G. Couarraze, and F. Puisieux, “Modification of Ketoprofen Bead Structure Produced by the Spherical Crystallization Technique with a Two-solvent System,” Int. J. Pharm., 144(2), 195-207 (1996).
J. Akbuga, “Preparation and Evaluation of Controlled Release Furosemide Microspheres by Spherical Crystallization,” Int. J. Pharm., 53(22), 99-105 (1989).
T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-sodium Ibuprofen Dihydrate,” Pharm. Tech., 31(6), 72-87 (2007).
http://acswebcontent.acs.org/landmarks/tagamet/tagamet.html
T. Lee, and F. B. Hsu, “Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
T. L. Threlfall, “Analysis of Organic Polymorphs: A Review,” Analyst, 120(10), 2435-2460 (1995).
L. Yu, S. M. Reutzil, and G. A. Stephenson, “Physical Characterization of Polymorphic Drugs: and Integrated Characterization Strategy,” PSTT, 1(3), 118-127 (1998).
R. Hilifiker, F. Blatter, and M. von Raumer, “Relevance of Solid-State Properties for Pharmaceutical Products,” Chapter 1 in Polymorphism in the Pharmaceutical Industry, (WILEY-VCH Verlag GmbH & Co. KGaA, Berlin, Germany, 2006), pp. 1-19.
H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. De Vincentis, G. Lewen, and A. W. Newman, “Physical Characterization of Pharmaceutical Solids,” Pharm. Res., 8(8), 963-973 (1991).
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterization of Polymorphs and Solvates,” Thermochim. Acta, 248(2), 1-59 (1995).
D. J. W. Grant, “Theory and Origin of Polymorphism,” Chapter 1 in Polymorphism in Pharmaceutical Solids, (Marcel Dekker, Inc., New York, USA, 1999), pp. 1-33.
T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum (III) (Alq3) by Crystal Engineering,” Cryst. Growth Des., 7(9), 1803-1810 (2007).
G. Nichols, and C. S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from Solution,” J. Pharm. Sci., 87(6), 684-693 (1998).
El-Khateeb, Sonia Z., Amer, Sawsan M., Razek, Sawsan A. Abdel, and M. A. Mohamed, “Stability-Indicating Methods for the Determination of Cimetidine Using Derivative and Fourier-Transform Infrared Spectrophotometry,” Spectro. Lett., 31(7), 1415-1429 (1998).
D. J. W. Grant, “Vibrational Spectroscopic Methods in Pharmaceutical Solid-state Characterization,” Chapter 5 in Polymorphism in Pharmaceutical Solids, (Marcel Dekker, Inc., New York, USA, 1999), pp. 95-138.
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, and W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003).
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling Operation,” Chapter 5 in Powder Technology Hand Book, 2nd ed, (Marcel Dekker Inc., New York, USA, 1997), pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental Properties of Powder Beds,” Chapter 3 in Powder Technology Hand Book, 2nd ed, (Marcel Dekker, New York, USA, 1997), pp. 413-423.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy”, Chapter 21 in Principles of Instrumental Analysis, Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 in Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
C. S. Colley, S. G. Kazarian, P. D. Weinberg, and M. J. Lever, “Spectroscopic Imaging of Arteries and Atherosclerotic Plaques,” Biopolymers, 74(4), 328-335 (2004).
C. Petibois, and G. Déléris, “Chemical Mapping of Tumor Progression by FT-IR Imaging: Towards Molecular Histopathology,” Trends Biotechnol., 24(10), 455-462 (2006).
O. S. Fleming, K. L. A. Chan, and S. G. Kazarian, “FT-IR Imaging and Raman Microscopic Study of Poly(ethylene terephthalate) Film Processed with Supercritical CO2,” Vib. Spectrosc., 35(1-2), 3-7 (2004).
T. H. Lee, and S. Y. Lin, “Microspectroscopic FT-IR Mapping System as a Tool to Assess Blend Homogeneity of Drug Excipient Mixtures,” Eur. J. Pharm. Sci., 23(2), 117-122 (2004).
K. L. A. Chan, and S. G. Kazarian, “Fourier Transform Infrared Imaging for High-Throughput Analysis of Pharmaceutical Formulations,” J. Comb. Chem., 7(2), 185-189 (2005).
F. Rouessac, and A. Rouessac, “Chemical Analysis-modern Instrumentation Methods and Techniques,” Chapter 10 in Infrared Apectroscopy, 1st ed, (John Willy & Sons, chichester, England, 2001), pp. 170-173.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 in Principles of Instrumental Analysis, 5th ed, (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo, “General Principles of Pharmaceutical Solid Polymorphism : a Supramolecular Perspective,” Adv. Drug Deliv. Rev., 56(3), 241-274 (2004).
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. Grant, and E. J. Munson, “Comparison of Solid-state 13C NMR Spectroscopy and Powder X-ray Diffraction for Analyzing Mixtures of Polymorphs of Neotame,” Anal. Chem., 71(16), 3325-3331 (1999).
D. Giron, “Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2001).
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Characterization of Polymorphic Systems Using Thermal Analysis,” Chapter 3 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.43-79.
A. J. Pasztor, “Thermal Analysis Techniques,” Chapter 50 in Handbook of Instrumental Techniques for Analytical Chemistry, (F. A. Settle, Prentice Hall PTR, New Jersey, USA, 1997), pp. 909-917.
P. J. Haines, and F. W. Wilburn, “Differential Thermal Analysis and Differential Scanning Calorimetry,” Chapter 3 in Thermal Methods of Analysis-principles, 5th ed, Applications and Problems, Peter J. Haines, (Blackie Academic and Professional, New York, USA, 1995), pp. 63- 89.
G. W. Smith, “Precipitation Kinetics in an Air-cooled Aluminum Alloy: A Comparison of Scanning and Isothermal Calorimetry Measurement Methods,” Thermochim. Acta, 313(1), 27-36 (1998).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General principles of pharmaceutical solid polymorphism a supramolecular perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
K. Urakami, Y. Shono, A. Higashi, K. Umemoto, and M. Godo, “A novel method for estimation of transition temperature for polymorphic pairs in pharmaceuticals using heat of solution and solubility data,” Chem. Pharm. Bull., 50(2), 263-267 (2002).
T. L. Therlfall, “Analysis of Organic Polymorphs a Review,” Analyst, 120(2), 2435-2460 (1995).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),” Sci. Tech. Adv. Matt., 5(3), 331-337 (2004).
A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films,” Nanoletters, 5(10), 1924-1930 (2005).
K.J. Kim, and H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng. Technol., 28(8), 946 -951 (2005).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic Acid, p-Hydroxyphenylacetic acid, p-Aminophenylacetic Acid, p-Hydroxybenzoic acid, and Ibuprofen in Pure Solvents,” J. Chem. Eng. Data., 47(6), 1379-1383 (2002).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
E. Tedesco, D. Giron, and S. Pfeffer, "Crystal Structure Elucidation and Morphology Study of Pharmaceuticals in Development," Cryst. Eng. Comm., 4(67), 393-400 (2002).
C. K. Chen, and A. K. Singh, “A “Bottom-Up” Approach to Process Development: Application of Physicochemical Properties of Reaction Products toward the Development of Direct-Drop Processes,” Org. Process Res. Dev., 5(5), 508-513 (2001).
J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris, “Capillary Precipitation of a Highly Polymorphic Organic Compound,” Cryst. Growth. Des., 3(6), 921-926 (2003).
W. W. Wang, and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwave-assisted Ionic Liquid Methods,” Cryst. Growth. Des., 5(2), 505-507 (2005).
D. Braga, and F. Grepioni, “Making Crystals from Crystals: a Green Route to Crystal Engineering and Polymorphism,” Chem. Commun. 7(29), 3635-3645 (2005).
J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc Electric Field Applied to Supersaturated Aqueous Glycine Solution Induces Nucleation of the γ Polymorph,” Phys. Rev. Lett., 94(14), 145-503 (2005).
N. Al-Zoubi, and S. Malamataris, “Effects of Initial Concentration and Seeding Procedure on Crystallisation of Orthorhombic Paracetamol from Ethanolic Solution,” Int. J.l Pharm., 260(1),123-135 (2003)
M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835 (2002).
A. M. Garcia, and E. S. Ghaly, “Preliminary Spherical Agglomerates of Water Soluble drug Using Natural Polymer and Cross-Linking Technique,” J. Control. Relea., 40(3), 179-186 (1996).
J. Burke, “Solubility Parameters: Theory and Application,” AIC book and paper group annual, 3, 13-58 (1984).
H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism” Chapter 7 in Polymorphism in Pharmaceutical Solids, Edited by H. G. Brttain, (Marcel Dekker, New York, 1999), pp.279-330.
K. Srinivasan, S. Anbukumar, and P. Ramasamy, “Mutual Solubility and Metastable Zone Width of NH4H2PO4-KH2PO4 Mixed Solutions and Growth of Mixed Crystals,” J. Cryst. Growth, 151(1), 226-229 (1995).
S. Teychene´, J. M. Autret, and B. Biscans, “Crystallization of Eflucimibe Drug in a Solvent Mixture: Effects of Process Conditions on Polymorphism,” Cryst. Growth. Des., 4(5), 971-977 (2004).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
L. C. Garzόn, and F. Martínez, “Temperature Dependence of Solubility for Ibuprofen in Some Organic and Aqueous Solvents,” J. Sol. Chem., 33(11), 1379-1395 (2004).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals”, AlChE J., 44(11), 2501-2514 (1998).
J. W. Mullin, “Crystal Habit Modification,” Chapter 6 in Crystallization, 3rd edition, (Butterworth-Heinemann, Oxford, UK, 1997), pp.248-250.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage from Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of Crystal Habit on the Compression and Densification Mechanism of Ibuprofen,” J. Crys. Growth, 243(2), 345-355 (2002).
N. Rasenack, and B. W. Müller, “Crystal Habit and Tabletting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
M. Lahav, and L. Leiserowitz, “The Effect of Solvent on Crystal Growth and Crystal Habit,” Chem. Eng. Sci., 56(7), 2245-2253 (2001).
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Relevance of Solid-state Properties for Pharmaceutical Products,” Chapter 1 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.1-19.
B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodrıguez-Hornedo, “General Principles of Pharmaceutical Solid Polymorphism: a Supramolecular Perspective,” Advanced Drug Del Rev., 56(2), 241-274 (2004).
J. Bernstein, R. J. Davey, and J-O Henck, “Concomitant Polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
P.T Cardew, and R. J. Davey, “The Kinetics of Solvent-mediated Phase Transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of Ppolymorphs Using Differential Scanning Calorimetry,” Cryst. Growth Des., 3(6), 991-995 (2003).
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochem. Acta., 248(2), l-59 (1995).
K. Sato, “Polymorphic Transformations in Crystal Growth” J. Phys. D: Appl. Phys., 26(8B), 77-84 (1993).
S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T. Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation,” Org. Pro. Res. Dev., 9(6), 911-922 (2005).
S. Datta, and D. J. W. Grant, “Crystal Structures of Drugs: Advances in Determination, Prediction and Engineering,” Nat. Rev. Drug. Discov., 3(1), 42-57 (2004).
W. H. Decamp, “The Impact of Polymorphism on Drug Development: A Regulator’s Viewpoint,” Am. Pharm. Rev., 4(3), 70-77 (2001).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
D. Gao, and J. H. Rytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
T. Suzuki, and H. Nakagami, “Effect of Crystallinity of Microcrystalline Cellulose on the Compactability and Dissolution of Tablets,” Eur. J. Pharm. Biopharm., 47(3), 225-230 (1999).
P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” J. Therm. Anal. Calorim., 45(1-2), 335-336 (1995).
A. Buttafavaa, G. Consolati, L. Di Landroc and M. Marianid, “γ-Irradiation Effects on Polyethylene Terephthalate Studied by Positron Annihilation Lifetime Spectroscopy,” Polymer, 43(26), 7477-7481 (2002).
G. Karpińska, J. Cz. Dobrowolski, and A. P. Mazurek, “Conformation and Tautomerism of the Cimetidine Molecule: A Theoretical Study,” J. Molecular Structure, 645(1), 37-43 (2003).
C. Chen, and P. A. Crafts “Correlation and Prediction of Drug Molecule Solubility in Mixed Solvent Systems with the Nonrandom Two-Liquid Segment Activity Coefficient (NRTL-SAC) Model,” Ind. Eng. Chem. Res., 45(13), 4816-4824 (2006).
R.A Sams, D.F Gerken, T.M Dyke, S.M Reed, and S.M Ashcraft, “Pharmacokinetics of Intravenous and Intragastric Cimetidine in Horses I. Effects of Intravenous Cimetidine on Pharmacokinetics of Intravenous Phenylbutazone,” J. Vet. Pharm. Thera., 20(5), 355-361 (1997).
A. Somogyi, and R. Gugler, “Clinical Pharmacokinetics of Cimetidine,” Clin. Pharmacokinet., 8(6), 463-495 (1983).
A. Avdeef, and CM. Berger, “pH-metric Solubility: 3. Dissolution Titration Template Method for Solubility Determination,” Eur. J. Pharm. Sci., 14(4), 281-291 (2001).
M. Shibata, H. Kokubo, K. Morimoto, K. Morisaka, T. Ishida, and M. Inoue, “X-ray Structural Studies and Physicochemical Properties of Cimetidine Polymorphism,” J. Pharm. Sci., 72(12), 436-1442 (1982).
M. Baranska, and L.M. Proniewicz, “FT-IR and FT-Raman Spectra of Cimetidine and Its Metallocomplexes,” J. Mol. Struct., 511(1), 153-162 (1999).
B Hegedus, and S Gorog, “The Polymorphism of Cimetidine” J. Pharm. Biomed. Anal., 3(4), 303-13 (1985).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
N. G. Anderson, “Solvent Selection,” Chapter 4 in Practical Process Research & Development, (Academic Press, New York, USA, 2000), pp.81-111.
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Characterization of Polymorphic Systems Using Thermal Analysis,” Chapter 3 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.43-79.
M. L. Peterson, S. L. Morissette, C. McNulty, A. Goldsweig, P. Shaw, M LeQuesne, J. Monagle, N. Encina, J. Marchionna, A. Johnson, J. G. Zugasti, A. V. Lemmo, S. J. Ellis, M. J. Cima, and Ö. Almarsson, “Iterative High-throughput Polymorphism Studies on Acetaminophen and an Experimentally Derived Structure for Form III,” J. Am. Chem. Soc., 124(37), 10958-10959 (2002).
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
S. Sudo, K. Sato, and Y. Harano, “Growth and Solvent-mediated Phase Transition of Cimetidine Polymorphic Forms A and B,” J. Chem. Eng. Japan, 24(5), 628-632 (1991).
H. G. Brittain, and D. J. W. Grant, “Methods for the Characterization of Polymorphs and Solvates,” Chapter 6 in Polymorphism in Pharmaceutical Solids, Edited by H. G. Brattain, (Marcel Dekker, New York, USA, 1999), pp.227-278.
W. A. Bueno, and E. G. Sobrinho, “Hydrogen Bonds in the Cimetidine Molecule,” Spectrochimica Acta, 51A(2), 287-292 (1995).
S. Z. El-Khateeb, S. M. Amer, S. A. A. Razek, and M. M. Amer, “Stability-indicating Methods for the Determination of Cimetidine Using Derivative and Fourier-Transform Infrared Spectrophotometry,” Spectro. Lett., 31(7), 1415-1429 (1998).
W. N. Richmond, P. W. Faguy, and S. C. Weibel, “An In Situ Infrared Spectroscopic Study of Imidazole Films on Copper Electrodes,” J. Electroanalytical Chem., 448(2), 237-244 (1998).
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 in Introduction to Spectroscopy (Thomson Learning, Mississippi, USA, 2001) PP. 13-101.
N. A. Lewis, “A Tracking Tool for Lean Solid-Dose Manufacturing,” Pharm. Tech., 30(10), 94-108 (2006).
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
P. D. Martino, R. D. Cristofaro, C. Barthe´le´my, E. Joiris, G. P. Filippo, and M. Sante, ” Improved Compression Properties of Propyphenazone Spherical Crystals,” Int. J. Pharm., 197(1), 95-106 (2000).
T. Lee, and F. B. Hsu, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284, 2007.
T. Lee, H. J. Hou, H. Y. Hsieh, Y. C. Su, Y. W. Wang, and F. B. Hsu, “The Prediction of the Dissolution Rate Constant by Mixing Rules: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 34(5), 522-535 (2008).
D. Amaro-Gonza´lez, and B. Biscans, “Spherical Agglomeration during Crystallization of an Active Pharmaceutical Ingredient,” Powder Technol., 128(2), 188-194 (2002).
M. Maghsoodi, O. Taghizadeh, G. P. Martin, and A. Nokhodchi, “Particle Design of Naproxen-disintegrant Agglomerates for Direct Compression by a Crystallo-co-Agglomeration Technique,” Int. J. Pharm., 351(1), 45-54 (2007).
Y. Kawahima, and C.E. Capes, “An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel,” Powder Technol. 10(1), 85-92 (1974).
Y. Kawashima, M. Okumura, and A. H. Takenaka, “Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals during Crystallization,” Science, 216(4550), 1127-1128 (1982).
Y. Kawashima, T. Handa, H. Takeuchi, M. Okumura, H. Katou, and O. Nagata, “Crystal Modification of Phenytoin with Polyethylene Glycol for Improving Mechanical Strength Dissolution Rate and Bioavailability by a Spherical Crystallization Technique,” Chem. Pharm. Bull., 34(8), 3376-3383 (1986).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by Spherical Crystallization Technique. V. Improvement of Dissolution and Bioavailability of Direct Compressed Tablets Prepared Using Tolbutamide Agglomerated Crystals,” Chem. Pharm. Bull., 40(11), 3030-3035 (1992).
A. Ribardie`re, P. Tchoreloff, G. Couarraze, and F. Puisieux, “Modification of Ketoprofen Bead Structure Produced by the Spherical Crystallization Technique with a Two-solvent System,” Int. J. Pharm., 144(2), 195-207 (1996).
J. Akbuga, “Preparation and Evaluation of Controlled Release Furosemide Microspheres by Spherical Crystallization,” Int. J. Pharm., 53(22), 99-105 (1989).
A. Y. Huang, and J. C. Berg, “Gelation of Liquid Bridges in Spherical Agglomeration,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 215(1-3), 241-252 (2003).
A. H. L. Chow, and M. W. M. Leung, “A Study of the Mechanisms of Wet Spherical Agglomeration of Pharmaceutical Powders,” Drug Dev. Ind. Pharm., 22(4), 357-371 (1996).
U. Teipel, T. Heintz, and H. H. Krause, “Crystallization of Spherical Ammonium Dinitramide (ADN) Particles,” Propellants, Explosives, Pyrotechnics, 25(2), 81-85 (2000).
A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. R. Link, C. Holtze, and D. A. Weitz, “Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics,” MRS Bulletin., 32(4), 702-708 (2007).
P. Di Martino, C. Barthe´ le´my, F. Piva, E. Joiris, G. F. Palmieri, and S. Martelli, “Improved Dissolution Behavior of Fenbufen by Spherical Crystallization,” Drug Dev. Ind. Pharm., 25(10), 1073-1081 (1999).
Y. Kawashima, M. Naito, S. Y. Lin, and H. Takenaka, “An Experimental Study of the Kinetics of the Spherical Crystallization of Aylline Sodium Theophylline Monohydrate,” Powder Technol., 34(2), 255-260 (1983).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
A. R. Paradkar, A. P. Pawar, J. K. Chordiya, V. B. Patil, and A. R. Ketkar, “Spherical Crystallization of Celecoxib,” Drug Dev. Ind. Pharm., 28(10), 1213-1220 (2002).
Y. Kawashima, T. Niwa, H. Takeuchi, T. Hino, Y. Itoh, and S. Furuyama, “Characterization of Polymorphs of Tranilast Anhydrate and Tranilast Monohydrate when Crystallized by Two Solvent Change Spherical Crystallization Technique, ” J. Pharm. Sci., 80(5), 472-478 (1991).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. II. Factors Causing Polymorphism of Tolbutamide Spherical Agglomerates,” Chem. Pharm. Bull., 37(8), 2183-2187 (1989).
T. Lee, and S. T. Hung, “Cocktail-Solvent Screening to Enhancement Solubility, Increase Crystal Yield, and Induce Polymorphs,” Pharm. Tech., 32(1), 76-95 (2008).
N. Blagden, R. J. Davey, H. F. Lieberman, L. Williams, R. Payne, R. Roberts, R. Rowe, and R. Docherty, “Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole,” J. Chem. Soc. Faraday Trans. 94(8), 1035-1044 (1998).
T. Lee, S. T. Hung, and C. S. Kuo, “Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip,” Pharm. Res., 23(11), 2542-2555 (2006).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
B. Hegedus, and S. Gorog, “The Polymorphism of Cimetidine” J. Pharm. Biomed. Anal., 3(4), 303-13 (1985).
M. Shibata, H. Kokubo, K. Morimoto, K. Morisaka, T. Ishida, and M. Inoue, “X-ray Structural Studies and Physicochemical Properties of Cimetidine Polymorphism,” J. Pharm. Sci., 72(12), 1436-1442 (1982).
Y. Kawashima, M. Okumura, and H. Takenaka, “Spherical Crystallization. Part VI. The Effects of Temperature on the Spherical Crystallization of Salicylic Acid,” Powder Technol., 39(1), 41-47 (1984).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. III. Micromeritic Properties and Dissolution Rate of Tolbutamide Spherical Agglomerates Prepared by the Quasi-Emulsion Solvent Diffusion Method and the Solvent Change Method,” Chem. Pharm. Bull., 38(3), 733-739 (1990).
K. Morishima, Y. Kawashima, Y. Kawashima, H. Takeuchi, T. Niwa, and T. Hino, “Micromeritic Characteristics and Agglomeration Mechanisms in the Spherical Crystallization of Bucillamine by the Spherical Agglomeration and the Emulsion Solvent Diffusion Methods,” Powder Technol., 76(1), 57-64 (1993).
M. Jbilou, Å. Ettabia, Å. M. Guyot-Hermann, and J. C. Guyot, “Ibuprofen Agglomerates Preparation by Phase Separation,” Drug Dev. Ind. Pharm., 25(3), 297-305 (1999).
M. Nocent, L. Bertocchi, F. Espitalier, M. Baron, and G. Couarraze, “Definition of a Solvent System for Spherical Crystallization of Salbutamol Sulfate by Quasi-emulsion Solvent Diffusion (QESD) Method.” J. Pharm. Sci., 90(10), 1620-1627 (2001).
Y. Kawashima, M. Imai, H. Takeuchi, H. Yamamoto, K. Kamiya, and T. Hino, “Improved Flowability and Compactibility of Spherically Agglomerated Crystals of Ascorbic Acid for Direct Tabletting Designed by Spherical Crystallization Process,” Powder Technol., 130(1), 283-289 (2003).
M. Baranska, and L. M. Proniewicz, “FT-IR and FT-Raman Spectra of Cimetidine and its Metallocomplexes,” J. Mol. Struct., 511(1), 153-162 (1999).
B. Hegedüs, and S. Görög, “The Polymorphism of Cimetidine,” J. Pharm. Biomed. Analysis, 3(4), 303-313 (1985).
N.G. Anderson, “Solvent Selection,” Chapter 4 in Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81-111.
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. Part II. Factors Causing Polymorphism of Tolbutamide Spherical Agglomerates,” Chem. Pharm. Bull., 37(8), 2183-2187 (1989).
Y. Kawashima, and C. E. Capes, “An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel,” Powder Technol., 10(1), 85-92, 1974.
S. Bhadra, M. Kumar, S. Jain, S. Agrawal, and G. P. Agrawal, “Spherical Crystallization of Mefenamic Acid,” Pharm. Tech., 28(2), 66-76 (2004).
A. P. Pawar, A. R. Paradkar, S. S. Kadam, and K. R. Mahadik, “Crystallo-co-agglomeration: A Novel Technique to Obtain Ibuprofen-paracetamol Agglomerates,” AAPS PharmSciTech, 5(3), 57-64 (2004).
S. Kaneko, Y. Yamagami, H. Tochihara, and I. Hirasawa, “Effect of Supersaturation on Crystal Size and Number of Crystals Produced in Antisolvent Crystallization,” J. Chem. Eng. Japan, 35(11), 1219-1223 (2002).
S. Shogo, S. Katsutoshi, and H. Yoshio, “Growth and Solvent-mediated Phase Transition of Cimetidine Polymorphic Forms A and B,” J. Chem. Eng. Japan, 24(5): 628-632 (1991).
W. N. Richmond, P. W. Faguy, and S. C. Weibel, “An In Situ Infrared Spectroscopic Study of Imidazole Films on Copper Electrodes,” J. Electroanalytical Chem., 448(2), 237-244 (1998).
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 in Introduction to Spectroscopy (Thomson Learning, Mississippi, U.S.A, 2001), pp. 13-101. |