博碩士論文 83342004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:13.59.38.110
姓名 余濬(Jun Yu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 都市雨水下水道設計模型之研究
相關論文
★ 水資源供需指標建立之研究★ 救旱措施對水資源供需之影響分析
★ 台灣地區颱風雨降雨型態之分析研究★ 滯洪池系統最佳化之研究
★ 運用遺傳演算優化串聯水庫系統聯合運轉規線之研究★ 河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例-
★ 整合型區域水庫與攔河堰聯合運轉系統模擬解析及優化之研究★ 河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例
★ 大漢溪中游生態基流量推估與棲地改善之研究★ 石門水庫水質模擬與水理探討
★ 越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例★ 防洪疏散門最佳啟閉時間之研究 -以基隆河臺北市河段為例-
★ 配水管網破管與供水穩定性關係之研究★ 石門水庫永續指標之建立與研究
★ 台灣地區重要水庫集水區永續指標建立與評量★ 限制開發行為對水庫集水區水質保護之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出之都市雨水下水道設計模式,包括雨水下水道管渠及滯洪池兩部份,其中管渠部份之設計模式係將設計雨型之概念融入合理化公式,藉由一場設計雨型之降雨降落在都市雨水下水道之各集水分區上,以合理化公式估算各集水分區之單位流量歷線,做為起始管渠設計之依據,下游管渠之流量歷線則藉由稽延時間(lagging time)予以合成,再做為下游管渠設計之依據。由案例探討得知,當雨型型式為中央式時,管渠中之尖峰流量為最大,後峰式次之,而前峰式最小。雨型之延時為三倍單位降雨時距時,管渠中之尖峰流量已達最大值,延時超過三倍單位降雨時距後,管渠中之尖峰流量已不再增大。
由於國內缺乏雨水下水道之實測流量資料,而僅有淹水深度之資料,以致無法直接驗證融入設計雨型之設計模式其精確度,鑑於SWMM模式於國內曾被驗證許多地區之淹水深度,其可信度可被接受,經以SWMM模式模擬水位之案例予以比較,融入設計雨型之合理化公式較SWMM模式之水位要低,平均差值為5.8%,另再以合理化公式法設計之案例予以比較,融入設計雨型之合理化公式較合理化公式法之流量為高,平均差值在2.0%以下,由此足證融入設計雨型之設計模式其可信度可被接受。
融入設計雨型之合理化公式設計模式,可以解決合理化公式僅能推估尖峰流量而無法提供流量歷線之缺點,其推估之流量歷線除可作為雨水下水道管渠設計之用,同時亦可作為推估滯洪池所需之容量。此外,融入設計雨型之設計模式所需基本資料與合理化公式法相同,於應用上甚為便利,且融入設計雨型之設計模式不僅可應用在僅有幹線之雨水下水道系統,亦可應用在具有幹線與支線之雨水下水道系統。
關於滯洪池設計模式之無因次化,在簡便法、水庫法與逐步法三種方法當中,簡便法係國內規範所規定之方法,其入流量歷線及出流量歷線皆設定為三角形,入流量歷線之基期愈長,滯洪池所需容量愈大。水庫法之入流量歷線則為無因次化之任意形狀,水理模式以無因次化之水文平衡方程式演算,當入流量歷線為無因次化三角形時,由無因次化理論分析得知滯洪池所需容量與三角形之特徵值α(α為尖峰入流量到達時間tp 與基期tb之比值,α= tp / tb)相關,當α值愈大,則滯洪池所需容量愈大。
經以無因次化理論分析簡便法後,當入流量歷線同為無因次化三角形時,簡便法較水庫法所推估之滯洪池容量要大,當α=1/6∼α=5/6,簡便法為水庫法之1.32∼1.02倍。逐步法其水理模式係以水文平衡方程式演算,入流量歷線則由設計雨型推導而得,由於雨型之型式與延時相互影響,導致入流量歷線之形狀不一,因此逐步法無法予以無因次化,惟就逐步法原有模式而言,經由案例之探討得知,設計雨型之尖峰降雨發生時間愈晚,滯洪池所需容量愈大,亦即後峰式有最大之滯洪容量,中央式次之,前峰式最小。當雨型延時超過1小時,滯洪池所增加之容量已不及3%。
本文最後提出複式滯洪池及其設計模式,其構造為在滯洪池內隔間出一小池與大池,並於牆底設置單向式閘門,利用小池於入流量之初期即可排除較多之水量,而達到節省容量之功能,小池之容量係採用水文平衡方程式推估,大池之容量則為小池滿溢過來之總水量,由無因次化理論之探討得知,當入流量歷線為三角形時,複式滯洪池較傳統滯洪池所節省之容量與三角形入流量歷線特徵值α和尖峰流量降低值Q*( Q*為尖峰出流量qp與尖峰入流量ip之比值,Q*=qp/ip)有關,當α值愈大時,所節省之容量愈多,且當Q*值愈大時,所節省之容量亦愈多。另由融入設計雨型之合理化公式法與滯洪池設計模式串聯應用之案例探討得知,當降雨延時為一小時,傳統滯洪池以後峰式所需之滯洪池容量最大,中央式次之,前峰式最小,而複式滯洪池於前峰式時節省47.3%容量,中央式時節省51.0%,後峰式時節省57.5%,此結果與入流量歷線為三角形時之結果一致,亦即當特徵值α愈大時,所節省之容量愈多。由於複式滯洪池較傳統滯洪池所需容量減少甚多,於雨水下水道工程上具有實用價值。
摘要(英) The urban storm sewer design model proposed in this dissertation analyzes conduits and detention ponds. The approach in analyzing conduits is developed from the Rational Formula incorporating design hyetograph. Given a rainfall event of design hyetograph falling in all subcatchment, the unit hydrograph of each subcatchment evaluated by the Rational Formula is applied to design the initial conduit. The downstream discharge hydrograph of conduit is synthesized by the mean of the lagging time to be used in designing the downstream conduit. For a case study, the peak flow in conduit are the largest, the middle and smallest, for the central peak type, the later peak type and the early peak type of rainfall pattern, respectively. It is found that the maximum peak flow in conduit occurs in the case that the duration of the design hyetograph being three times of the unit rainfall interval.
Due to the lack of actual discharge measurements, the result calculated by the SWMM model for several regions in Taiwan are employed to verify the confidence of the proposed model. The difference between the water depth, as well as discharge, calculated from the proposed model and that obtained from the SWMM model is insignificant.
This model, incorporating the Rational Formula and design hyetograph overcomes the defect of the Rational Formula alone. The Rational Formula provides only the peak flow, while this model provides the complete discharge hydrograph. Not only it can be applied to design the conduit of sewer, but also to design the detention pond. Furthermore, this model, requires the same traditional fundamental data, is convenient to be applied for a system of trunks and branches of sewer conduits.
The second part of this dissertation discusses the dimensionless approaches in the model of detention pond sign. Currently three methods, namely, the Simple method, the Reservoir method and the Progress method, are used to evaluate the volume of the detention pond. The Simple method is mandated by the authorities in Taiwan. The triangular hydrograph of inflow and outflow, are assumed in the Simple method. In the Simple method, the longer the base time of inflow hydrograph is, the larger the volume of detention pond is required. As for the Reservoir method, a dimensionless arbitrary shape inflow hydrograph can be applied. The Reservoir method is routed by a set of dimensionless equations based on hydrologic balance. In the case when the shape of inflow hydrograph is triangular, the volume of detention pond is subject to a characteristic value, α (α= tp / tb, tp being the peak reaching time of inflow hydrograph , and tb being the base time.). The larger value of α is, the greater the volume of detention pond is required.
Furthermore, the Simple method is analyzed by the dimensionless theorem. For a triangular shape of dimensionless inflow hydrograph, the result shows that the volume of detention pond evaluated by the Simple method is larger than that by the Reservoir method. It is found that when the characteristic value α is between 1/6 to 5/6, the volume of detention pond evaluated by the Simple Method is 1.32 to1.02 times that evaluated by the Reservoir method. Moreover, the Progress method is routed by a set of hydrologic balance equations, and the inflow hydrograph is derived from design hyetograph. So the Progress method cannot be analyzed by the dimensionless theorem. For a case study of the Progress method itself, the result shows that the later the peak rainfall time of design hyetograph is, the greater the volume of detention pond is required. In other words, the volume of detention pond is the largest, the middle and smallest, for the later peak type, the central peak type and the early peak type, respectively. As the duration of design hyetograph exceeds one hour, the increasing volume of detention pond becomes insignificant.
The final part of this dissertation proposes the concept and the design approach of a double detention pond. The structure of double detention pond is to add a separate pond within the traditional detention pond and install a set of one-way gates. The puny pond can release water quickly at the early stage during the inflow. The volume of the puny detention pond is evaluated by the equations of hydrologic balance, and the volume of huge detention pond is evaluated by computing the overflowing water from the puny pond. According to dimensionless analysis, for the triangular inflow hydrograph, the volume of double detention pond is subject to the characteristic value α and the peak reducing value Q*( Q*= qp/ip, qp being the peak of outflow hydrograph, ip being the peak of inflow hydrograph). The larger the value of α is, the more the saving volume of double detention pond is. Moreover, the larger the value of Q* is, the more the saving volume of double detention pond is. A case study shows under 1-hr duration of design hyetograph, the volume of traditional detention pond is the largest, the middle and the smallest, evaluated by the later peak type, the central peak type and the early peak type of rainfall pattern, respectively. Furthermore, the saving volume of double detention pond is 47.3%, 51.0% and 57.5%, for the early peak type, the central peak type and the later peak type of rainfall pattern, respectively. Similar result is also identified for the case of a triangular inflow hydrograph.
關鍵字(中) ★ 雨水下水道
★ 合理化公式
★ 複式滯洪池
★ 設計雨型
關鍵字(英) ★ double detention pond
★ storm sewer
★ Rational Formula
★ design hyetograph
論文目次 封面
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.3 研究方法
第二章 雨型式合理化公式法之雨水下水道設計模式
2.1 合理化公式法設計模式概述
2.2 雨型式合理化公式法設計模式之建立
2.3 雨型式合理化公式法設計模式之應用與比較
第三章 傳統滯洪池設計模式
3.1 傳統滯洪池之構造及功能簡介
3.2 傳統滯洪池簡便法設計模式
3.3 傳統滯洪池逐步法設計模式
3.4 結果與比較
第四章 傳統滯洪池設計模式無因次化之理論分析
4.1 傳統滯洪池簡便法無因次化之理論分析
4.2 傳統滯洪池水庫法無因次化之理論分析
4.3 水庫法與簡便法滯洪池容量之探討
4.4 結果與比較
第五章 複式滯洪池設計模式
5.1 複式滯洪池之構造及功能說明
5.2 複式滯洪池設計模式之建立
5.3 複式滯洪池設計模式應用與驗證
5.4 結果與比較
第六章 雨型式合理化公式及滯洪池設計模式之聯合應用
6.1 雨型式合理化公式法及滯洪池設計模式之聯合應用
6.2 結果與比較
第七章 結論與建議
參考文獻
參考文獻 A.中文部份:
王如意、易任(1988),應用水文學(新編上冊),國立編繹館。
王如意、謝平城、鄒明樹(1993),〝以運動波方程式探討合理化公式之適用性研究〞,台灣水利季刊,第41卷3期,pp.1-25。
王茂興(1989),〝坡地雨水調節池設計概論〞,現代營建。
王茂興(1990),〝雨水滯留池設計重點之探討〞,現代營建。
王茂興、傅新民、莊聿今 (1993),〝山坡地集水區滯留池之整體規劃研究〞臺灣水利季刊,第41卷第2期。
中原大學土木研究所(1995),雨水下水道容量設計標準之檢討。
中華水土保持學會(1992),水土保持手冊。
台北市政府工務局(1989),台北市山坡地開發建築基地規劃設計技術規範。
台北市政府(1990),台北市下水道工程設施標準。
台灣大學水工試驗所(1989),台北市雨水下水道規劃手冊(上、下冊)。
台灣省公共工程局(1969),台北市雨水下水道系統規劃報告。
台灣省住宅及都市發展局(1987),台北縣淡水鎮(竹圍地區)雨水下水道系統
規劃報告。
台灣省住宅及都市發展局(1987),台北縣淡水鎮(竹圍地區)雨水下水道系統
規劃報告。
台灣省住宅及都市發展局(1996),三重市(重新檢討)雨水下水道系統規劃報
告。
台灣省住宅及都市發展局(1997),花蓮縣秀林(新秀地區)雨水下水道系統規
劃報告。
台灣省住宅及都市發展局(1998),台北縣萬里鄉雨水下水道系統規劃報告。
台北縣鶯歌鎮公所(1998),台北縣鶯歌鎮(鳳鳴地區)雨水下水道系統規劃報
告。
行政院農委會(1996),水土保持技術規範。
朱世文、黃宏斌(1998),「滯洪壩不同形狀開口之滯洪效益探討」,87年度農業
工程研討會。
呂紹淵、黃材成、顏介皇(1992),「山坡地開發調節池容量設計之研究」,第6
屆水利工程研討會pp.205-216。
吳瑞賢、余濬(1996a),〝台灣地區山坡地滯留池容量計算方法之比較研究〞,台
灣水利季刊,第44卷第1期,pp.53-63。
吳瑞賢、余濬(1996b),〝滯留池節省容量及集中沈砂之設計方法探討〞,中華水
土保持學報,27(1),pp.29-38。
余濬(1988),〝降雨設計雨型之研究〞,台灣大學土木研究所碩士論文。
余濬、吳瑞賢(1995),〝滯留池節省容量之新設計方法探討〞,84年度農業工程
研討會,pp.695-708。
余濬、吳瑞賢(1996),〝合理化公式應用於本省雨水下水道設計之模式研究〞,
第八屆水利工程研討會,pp.289-296。
余濬、吳瑞賢(2000),〝正方形出水孔口之滯洪池容量無因次化分析〞,第11屆
水利工程研討會,pp.K29-34。
余濬、吳瑞賢、曾志銓(2000),〝雨水下水道設計模式之研究〞,第10屆下水道
技術研討會,pp.183-191。
余慶璋、吳瑞賢、余濬(1999),〝滯流池設計問題之探討〞,第十屆水利工程研
討會。
沈榮茂、黃月娟(1994),〝合理化公式應用於台灣河川及排水規劃之檢討〞,水
利,第四期,pp.104-114。
呂珍謀(1991),〝合理化公式於台灣流域之改良應用研究〞,台灣水利季刊,第
39卷第4期,pp.58-72。
林秋裕(1984),下水道工程,茂昌圖書公司。
林國峰、張守陽(1991∼1994),〝臺灣地區雨型之初步研究〞,台大水工試驗所研究報告第118、144、163、193號。
陳正炎、張三郎、陳薔若、黃宏信(1998a),〝滯洪池滯洪容量理論解析之探討〞,中華水土保持學報,第29卷第2期,pp.115-126。
陳正炎、林致遠、藍令才、陳志成(1998b),〝矩形出流口式滯洪壩最小滯洪容積之研究〞,興大工程學報,第9卷第1期,pp.35-46。
陳正炎、盧昭堯、何智武、王傳益(1998c),〝矩形出流口式滯洪池滯洪容積之實驗研究〞,中國土木水利工程學刊,第10卷第4期,pp.795-802。
陳正炎、洪耀明、陳順天(2000),〝滯洪池數值演算之圖解法〞,89年度農業工
程研討會,pp.633-639。
陳樹群(1999),〝高強度降雨之坡地集流時間公式〞,中華水土保持學報,第30卷第2期,pp.103-115。
索明(1977),應用水文統計學,偉成文化事業公司。
張守陽(1997),〝臺灣地區設計雨型之特性評估〞,農業工程學報。
許鎮龍、歐獅(1984),〝電腦協助大型衛生下水道系統最經濟化設計─非等間斷
微分動態調配法〞,中國土木水利工程學會73年年會論文集,pp.429-440。
邱林鑫(1983),〝動態調配對下水道設計之應用〞,國立成功大學環境工程研究
所碩士論文。
黃宏斌、張三郎、吳正雄(1996),〝調節池設計之探討〞,中華水土保持學報,
第27卷第1期,pp.39-46。
黃宏斌(1998),「調節池孔口配置之水理特性研究」,台灣水利季刊,第46卷第
1期。
黃書禮、黃美純(1985),〝滯留池用地面積估算方法之研究及對土地使用規劃之
應用〞,工程環境會刊,第6期。
游進裕(1998),「合理法滯洪量設計方法與比較」,第9屆水利工程研討會,H61-
H68。
鄭克聲、陳葦庭、葉惠中(1999),「坡地開發滯留池之水文設計探討」,台灣水
利季刊,第47卷第4期。
莊聿今、王茂興(1991),〝山坡地雨水滯留池容量研究〞,中興工程,第30期。
溫清光、石志祥(1983),〝間斷微分動態調配法對下水道路線、管線及埋深選擇
之應用〞,中國土木水利工程學會第八屆廢水處理技術研討會論文集,pp.
605-625。
歐陽嶠暉(1983),下水道工程學,長松出版社。
顏清連、許銘熙(1988),電腦在水利工程上之應用,中國土木水利工程學會。
顏清連、顏本琦、楊德良、郭振泰、林忠雄、黃寄萍、陳昶憲(1985),台灣省
都市雨水下水道數學模式,台灣大學土木研究所水利組研究報告。
藍令才(1997),〝矩形出流口滯洪壩水理特性之研究〞,中興大學土木研究所碩
士論文。
B.日文部份:
下水道雨水調整池技術基準(案)(1984),日本下水道協會。
調節池の計畫と設計(1988),都市水文研究グル-プ,山海堂。
C.英文部份:
Akan, A. O. (1989), “Detention pond sizing for multiple return periods.” J. Hydr. Engrg., ASCE, 115(5), pp.650-664.
Akan, A. O. (1990), “Single-outlet detention-pond analysis and design.” J. Irrigation and Drainage Engrg., ASCE, 116(4), pp.527-536.
Akan, A. O., Al-Muttair, F. F., and Al-Turbak, A. S. (1987), “Design aid for detention basins.” Design of hydraulic structures Proc. Int. Symp. Colorado State University, pp.177-182.
Arie, B. Z. (1989), “Toward a New Rational Method,” J. of Hydraulic Engineering, ASCE, vol.115, No.9, pp.1241-1255.
Bennett, M. S., and Mays, L. W. (1985), “Optimal Design of Detention and Drainage Channel Systems,” J. of Water Resources Planning and Management, ASCE, vol.111, No.1, pp.99-112.
Chien, J. S., and Saigal, K.K. (1974), “Urban Runoff by Linearized Subhydrographic Method,” J. of Hydraulic Division, ASCE, vol.100, No.HY8, pp.1141-1157.
Curtis, D. C., and McCuen, R. H (1977), “Design Efficiency of Stormwater Detention Basins.” J. Hydr. Engrg., ASCE, 103, No. WR1.,pp.125-141.
Dajani, J. S.,and Gemmell, R. S. (1971), “Economics of Wastewater Collection Networks.” Research Report No.43, Water Resoces Center, University of Illinois at Urban Champaign, Illinois.
Dajani, J. S.,and Hasit, Y. (1974), “Capital Cost Minimization of Drainage Networks.” Jour .Env .Eng .Div., ASCE, vol.100, No.EE2, pp.325-337.
Fair, G. M., and Geyer, J. C. (1959), Water Supply and Wastewater Disposal, John Wiley and Sons, New York, N.Y.
Froise, S., Barges, S. J. and Bogan, R. H. (1975), “A Dynamic Programming Approach to Determine Least Cost Strategies in Urban Nework Design.” Paper Presented at ASCE Specialty Conference on Water Resources Planning and Management, Colorado State University, ForT Collins, Colorado.
Gregory, R. L., and Atnold, C. E. (1932), “Runoff-Rational Runoff Formulas.” J. Hydr. Engrg., ASCE, 113(11), pp.1441-1450.
Guo, C. Y. (1999), “Detention Storage Volume for Small Urban Catchments.” J. of Water Resources Planning and Management, ASCE, 125(6), pp.380-382.
Guo, Y., and Adams, B. J. (1999a), “Analysis of Detention Ponds for Storm Water Quality Control.” Water Resources Research, 35(8), pp.2447-2456.
Guo, Y., and Adams, B. J. (1999b), “An Analytical Probabilistic Approach to Sizing Flood Control Detention Facilities.” Water Resources Research, 35(8), pp.2457-2468.
Holland, M. G. (1966), “Computer Model of Wastewater Collection Systems.” Water Resources Group, Harvard University, Cambridge, Mass.
Horn, D. R. (1987), “Graphic estimation of peak flow reduction in reservoirs.” Transactions ASCE., vol.96, pp.1038-1177.
Huff, F. A. (1967), “Time Distribution of Rainfall in Heavy Storms,” Water Resources Research, 3(4), pp.1007-1019.
Kowalski, R., Reuber, J. and Kongeter, J. (1999), “Investigations into and Optimisation of the Performance of Sewage Detention Tanks During Storm Rainfall Events,” Water Science and Technology, vol.39, No.2, pp.43-52.
Mays, L. W. (1976), “Optimal Layout and Desing of Storm Sewer Systems.”, ph.D.Thesis, Dept. of Civil Eng.,Univ. of Illinois at Urban-Champaign.
Mays, L. W.,and Bedien, P. B. (1982), “Model for Optimal Size and Location of Detention.” J. Hydr. Engrg., ASCE, 108, No. WR3.pp.270-285.
Mays, L. W., and Wenzel, H. G. (1976), “A Serial DDDP Approach for Optimal Design of Multi-level Branching Storm Sewer Systems.” Water Resources Research Vol.12, No.5.
Mays, L. W.,and Yen, B. C. (1975), “Optimal Cost Design of Branched Sewer Systems,” Water Resources Research, Vol.11, No.1, pp.37~47.
McCuen, R. H., Wong, S. L. and Rawls, W. J. (1984), “Estimating Urban Time of Concentration,” J. of Hydraulic Engineering, ASCE, vol.110, No.7, pp.887-904.
Meredith, D. D. (1971), “Dynamic Programming with Case Study on Planning and Desing of Urban Water Facilities,” Sec. IX, Treatise on Urban Water Systems, Colorado State University, pp.590~652.
Merrit, L. B. and Bogan, R. H. (1973), “Computer-Based Optimal Desing of Sewer Systems.” Jour . Env. Eng. Div., ASCE , vol.99, No EE1, pp.35-53.
Orth, H. M. (1983), “Sewerage System Design and Modelling,” Lecture Note, Asian Institute of Technology.
Pilgrim, D. H., and Cordery, I. (1975), “Rainfall Temporal Patterns for Design Floods,” J. of Hydraulic Engineering, ASCE, vol.101, No.HY1, pp.81-95.
Rafael, S. G., and Mohammad, B. R. (1996), “Optimal Estimation of Storage-Release Alternatives for Storm-Water Detention Systems,” J. of Water Resources Planning and Management, ASCE, vol.122, No.6, pp.428-436.
Ragan, R. M. and Duru, J. O. (1972), “Kinematic Wave Nomograph for Times of Concentration,” J. of Hydraulic Division, ASCE, vol.98, No.HY10, pp. 1765-1771.
Rogers, R. A. (1968), “Rational “ Rational ” Method of Storm Drainage Design,” J. of Irrigation and Drainage Division, ASCE, vol.94, No.IR4, pp.465-480.
Schaake, J. C., Geyer, J. C. and Knapp, J. W. (1967), “Experimental Examination of the Rational Method,” J. of Hydraulic Division, ASCE, vol.93, No.HY6, pp.353-370.
Steel, E.W., and McGhee, T.J. (1979), Water Supply and Sewerage, McGraw-Hill Book Co., New York, N.Y., fifth edition, pp.400-403.
Viessman, W., Knapp, J. W., Lewis, G. L. and Harbaugh, T. E.(1977), Introduction to Hydrology, Harper & Row Publishers, New York, N.Y., second edition, pp.503-517.
Wu, R. S., and Yu, C. (1996),〝Application of the Double Detention Pond to Solve Deluge of urban Storm Sewage, 〞10 th Congress of the Asia and Pacific Division of the IAHR, Malaysia.
Wu, R. S., Yu, C., Liaw, S. L., and Chen, C. H. (1998) 〝Urban Storm Sewage Design Using the Double Detention Pond Concept and a Modifide Rational Formula Approach, 〞25 th Annual Conferecne an Water Resources Planning and Management, Chicago, USA.
Yen, B. C., Wenzel, H. G., Jr., Mays, L. W., and Tang, W. H. (1976), “Advance Methodologies for Design of Storm Sewer Systems,” Final Rep., WRC Research Report No.112, University of Illinois, Water Resoures Center.
Yen, B. C., and Chow, V. T. (1977), “Feasibility Study on Research of Local Design Storm,” Rep. FHWA-RD-78-65, Fed. Highway Admin. Washington, D.C
Yen, B. C., Cheng, S. T., Jun, B. H., Voorhees, M. L., and Wenzel, Jr. (1984), “Illinnois Least-Cost Sewer System Design Model: ILSD-1&2 User’s Guide,” WRC Research Report, University of Illinois, Water Resoures Center.
Zepp, P. L., and Leary, A. (1969), “A Computer Program for Sewer Design and Cost Estimation,” Regional Planning Council, Baltimore, Md.
指導教授 吳瑞賢 審核日期 2009-5-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明