博碩士論文 90641003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:228 、訪客IP:3.137.189.32
姓名 王聖翔(Sheng-Hsiang Wang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用
(Estimate of radiative forcing and regional feedback of Asian biomass burning aerosols)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 鹿林山與中壢氣膠光學垂直特性之監測與比較★ 北台灣冬季層狀雲化學特性分析
★ 鹿林山空氣品質背景監測站之背景值分析★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析
★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討★ 不同地域雲凝結核微物理特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的為估算2001 年3 月TRACE-P (TRAnsport and
Chemical Evolution over the Pacific)實驗期間,亞洲生質燃燒氣膠的輻
射衝擊。吾人結合中尺度氣象模式MM5、大氣傳送模式HYSPLIT
和太陽輻射傳送模式CLIRAD-SW,模擬生質燃燒所排放的黑碳
(Black Carbon, BC)和有機碳(Organic Carbon, OC)氣膠之空間分布特
性,進一步模擬其所造成的直接輻射驅動力(direct radiative forcing)和
測試其對氣象場的反饋作用。BC 和OC 氣膠的日排放源資料具有高
度空間和時間解析度,有助於提高模式模擬的準確性。
結果顯示,南亞地區(70o–110oE, 5o–30oN)的生質燃燒氣膠月平均
濃度為1.2 μg m-3,最大值為14.1 μg m-3,發生在緬甸西部,同時發
現一個3 km 厚的生質燃燒氣膠層存在南亞地區上空,且延伸至印度
洋和西太平洋。生質燃燒氣膠光學厚度(Aerosol Optical Depth, AOD)
最大值出現在緬甸西岸達0.14,其中BC 氣膠的貢獻較OC 氣膠顯著,
尤其發生在排放源區附近時。在晴天空的情況下,生質燃燒氣膠所造
成的月平均大氣層頂輻射驅動力介於-1.81(海洋上)-1.08(陸地上) W
m-2 之間,地表輻射驅動力介於-0.04--9.48 W m-2 之間。全天空的情
況下,生質燃燒氣膠所造成的月平均的大氣層頂輻射驅動介於
-1.65(海洋上)-1.42(陸地上) W m-2 之間,地表輻射驅動力介於-0.03
--9.06 W m-2 之間。比較晴天空和全天空的結果顯示,雲的存在有助
於增加大氣層頂和地表之輻射驅動力。大氣層頂輻射驅動力的海陸分
布特性主要與BC 和OC 氣膠光學特性、OC 與BC 之AOD 比值、地
表反照率有關。
生質燃燒氣膠減少抵達地表的太陽輻射,並加熱大氣,形成地表
局部性的冷卻及低層大氣增溫,其中以BC 氣膠的影響更為顯著,所
造成地表輻射驅動力為OC 氣膠的5-7 倍,且有較高的大氣加熱率。
生質燃燒氣膠造成的大氣加熱率改變量可達6 ºC month-1,發生在排
放源區附近地表至4 公里的高空,海洋和陸地上的大氣間存在著很強
的大氣加熱率改變量水平梯度,可能影響局部環流之發展。經由模擬
生質燃燒氣膠地表直接輻射驅動力對氣象場的反饋作用測試,顯示排
放源區附近地表溫度降溫可達2 ºC month-1,然而,但目前仍然缺乏
一個完整且具雙向反饋機制之模式,以探討大氣中動力與熱動力過程
將如何改變,及其對區域氣象場之衝擊,此可做為未來工作重點。地
表輻射量的改變將造成氣象場在空間上重新分布,海平面氣壓場有
-2.5-0.5 hPa month-1 的變異,月平均雲量分布有±20 %的變異,月累
積雨量達±500 mm 的變異,凸顯生質燃燒氣膠對於區域氣候變遷有不
可忽視之影響。
摘要(英) The purpose of this study is to estimate the regional radiative impact of Asian biomass burning aerosols during the experimental period of Transport and Chemical Evolution over the Pacific (TRACE-P) in March, 2001. Integration of the Fifth-Generation NCAR / Penn State Mesoscale Model (MM5), USA NOAA Hybrid Single-Particle Lagrangian Integrated Transport model (HYSPLIT) and a solar radiative transfer model (CLIRAD-SW) allow us to simulate the spatial and temporal distributions of black carbon (BC) and organic carbon (OC) aerosols from biomass burning. It also allows us to estimate further their aerosol optical properties and radiative forcing. Emissions of BC and OC aerosols from biomass burning sources were based on a higher spatial and temportal resolution of emissions during TRACE-P.
The results show that the monthly mean surface concentration of OC and BC is 1.2 μg m-3 in the South Asian region (70o–110oE, 5o–30oN). Western Myanmar has the maximum value, with the concentration reaching 14.1 μg m-3. There is a persistent aerosol layer with a thickness of 3 km over most of the South Asian region, and the plumes of biomass burning aerosols extend far to the Indian Ocean and the western Pacific Ocean. The aerosol optical depth (AOD) of the biomass burning carbon aerosols reaches a maximum value of 0.14 over western Myanmar. Compared to the OC aerosol, the BC aerosol makes a remarkable contribution to the AOD, especially in the source region. The monthly mean clear-sky direct shortwave radiative forcing ranges from -1.81 (sea) to 1.08 (land) W m-2 at the top of the atmosphere and from -0.04 to -9.48 W m-2 at surface. The monthly mean all-sky direct shortwave radiative forcing ranges from -1.65 (sea) to 1.42 (land) W m-2 at the top of the atmosphere and from -0.03 to -9.06 W m-2 at surface. The existence of cloud contributes a positive increase of radiative forcing. Owing to the spatial distributions of the AOD ratio (OC/BC) and the surface albedo, there is a sea-land distribution of radiative forcing at the top of the atmosphere.
Biomass burning aerosols result in less solar irradiance reaching the Earth’s surface, but greater heating in the lower atmosphere, particularly for the BC aerosols, which have stronger atmosphere radiative forcing and the atmospheric heating rate. The BC aerosols cause surface radiative forcing 5-7 times more than that due to the OC aerosols. The biomass burning aerosols result in an increase of the atmospheric heating rate up to 6ºC month-1 in lower atmosphere of the source region. There is a strong horizontal gradient of heating rate near the source regions, which may modify local circulations. We test the regional meteorological feedback due to biomass burning aerosol surface radiative forcing, and find that the surface temperature decreases 2ºC month-1 in the same region. Meanwhile, monthly sea level pressure and cloud mounts in the domain vary in -2.5-0.5 hPa and 20 %, respectively. The accumulate precipitation varies more than ± 500 mm in the southern Asia in March, 2001. The results imply the biomass burning aerosols have significant influences on the regional climate change. However, a more complete feedback mechanism included in the model is needed for a rationable investigation on how the radiative forcing affects the regional meteorological variations.
關鍵字(中) ★ 氣膠光學厚度
★ 含碳氣膠
★ 輻射驅動力
★ 生質燃燒
關鍵字(英) ★ Biomass burning
★ aerosol optical depth
★ carbonaceous aerosols
★ radiative forcing
論文目次 第一章 前 言------------------------------------1
1.1 研究動機-----------------------------------1
1.2 研究目的-----------------------------------3
第二章 相關文獻回顧-----------------------------5
2.1 生質燃燒氣膠之排放和物化特性---------------6
2.2 生質燃燒氣膠的光學特性---------------------7
2.3 生質燃燒氣膠的輻射效應---------------------8
2.4 生質燃燒對於全球輻射影響之研究------------11
2.5 生質燃燒的相關實驗與結果------------------12
2.6 亞洲生質燃燒的研究------------------------13
2.7 生質燃燒對區域氣候之影響------------------14
第三章 研究方法--------------------------------15
3.1 氣象場資料與中尺度氣象模式----------------15
3.2 生質燃燒氣膠排放資料----------------------17
3.3 大氣傳送模式------------------------------20
3.4 生質燃燒氣膠光學特性參數化----------------23
3.5 輻射傳送模式與輻射驅動力------------------25
3.6 生質燃燒氣膠對氣象場反饋機制的建立--------28
3.7 模擬個案設計------------------------------29
第四章 生質燃燒季節之氣象場與濃度場特徵分析----31
4.1 氣象概述----------------------------------31
4.2 氣流軌跡分析------------------------------34
4.3 生質燃燒氣膠濃度分布----------------------36
第五章 生質燃燒氣膠對於區域輻射之衝擊----------40
5.1 生質燃燒氣膠光學厚度----------------------40
5.2 生質燃燒氣膠對太陽短波輻射之影響----------43
5.3 生質燃燒氣膠造成的大氣加熱率--------------48
5.4 地表反照率對於模擬結果的影響--------------49
5.5 模擬結果與文獻之比較----------------------50
5.6 生質燃燒氣膠對地表蒸發量的影響------------54
第六章 生質燃燒對於氣象場反饋作用之敏感度研究--56
6.1 反饋機制的模擬方法建立--------------------56
6.2 對氣象場的反饋作用------------------------57
第七章 結論與展望------------------------------61
7.1結論---------------------------------------61
7.2展望---------------------------------------64
參考文獻---------------------------------------65
參考文獻 Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288, 1,042-1,047.
Akimoto, H. (2003), Global air quality and pollution, Science, 302, 1,716-1,719.
Anderson, B. E., W. B. Grant, G. L. Gregory, E. V. Browell, Jr. Collines, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake (1996), Aerosols from biomass burning over the tropical Sounth Altantic regions: distributions and impacts. J. Geophys. Res., 101(D19), 24,117-24,137.
Andreae, M. O., J. Fishman, and J. Lindesay (1996), The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and South African Fire-Atmosphere Research (SAFARI): An introduction, J. Geophys. Res., 101, 23,519-23,520.
Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
Andreas, K. and J. M. Haywood (2003), Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties, J. Geophys. Res., 108(D13).
Anthes, R. A., and T. T. Warner (1978), Development of hydrodynamic models suitable for air pollution and other meteorological studies. Mon. Wea. Rev., 106, 1,045-1,078.
Ayers, G. P., and K. K. Yeung (1996), Acid deposition in Hong Kong, Atmos. Environ., 30, 1581-1587.
Baumgardner, D. and A. Clarke (1998), Changes in aerosol properties with relative humidity in the remote southern hemisphere marine boundary layer , J. Geophys. Res., 103(D13), 16525-16534.
Bergstrom, R. W., P. Pilewskie, B. Schmid, P. B. Russell (2003), Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J. Geophys. Res., 108(D13).
BIBEX Web(http://diotima.mpch-mainz.mpg.de/~bibex/).
Binkowski F. S., and U. Shankar (1995), The regional particulate matter model 1. model description and preliminary results. J. Geophys. Res., 100(D12), 26,191-26,209.
Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont (2004), A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.
Boucher, O., and T. L. Anderson (1995), General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry, J. Geophys. Res., 100, 26,117–26,134.
Carmichael, G. R., et al. (2003), Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment, J. Geophys. Res., 108(D21), 8823, doi:10.1029/2002JD003117.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris (1998), Analysis of the seasonal behavior of tropospheric ozone at Hong Kong. Atmospheric Environment, 32, 159-168.
Chang, J. S., R. A. Brost, I. S. A. Isakson, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek (1987), A three-dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res., 92, 14,681-14,700.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423-430.
Charlson, R. J., T. L. Anderson, H. Rodhe (1999), Direct climate forcing by anthropogenic aerosols: Quantifying the link between sulfate and radiation, Contrib. Atmos. Phys., 72, 79-94.
Chen, C. S., and Y. L. Chen (2003), The rainfall characteristics of Taiwan. Monthly Weather Review, 131, 1,323-1,341.
Chin, M., A. Chu, R. Levy, L. Remer, Y. Kaufman, B. Holben, T. Eck, P. Ginoux, and Q. Gao (2004), Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements, J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829.
Chou, M. D., and M. J., Suarez (1999), A shortwave radiation parameterization for atmospheric studies, Technical Report Series on Global Modeling and Data Assimilation, 15, NASA/TM-1999-104606. pp40.
Chou, M. D., P. K. Chan, and M. Wang (2002), Aerosol radiative forcing derived from SeaWIFS-Retrieved aerosol optical properties, J. Atmos. Sci., 59, 748-757.
Chuang, C. C., J. E. Penner, L. L. Edwards (1992), Nucleation scavenging of smoke particles and simulated droplet size distributions over large fires. Journal of Atmospheric Science, 49, 1,264-1,275.
Chung, C. E., V. Ramanathan, and Jeffery T. Kiehl (2002), Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange, J. Climate, 15, 2,462-2,476.
Chylek, P., and J. Wong (1995), Effect of absorbing aerosols on global radiation budget, Geophys. Res. Lett., 22, 929-931.
Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and C. S. Zender (2002), Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J. Geophys. Res., 107(D19), 8028, doi:10.1029/2000JD000032.
Conant, W. C., J. H. Seinfeld, J. Wang, G. R. Carmichael, Y. Tang, I. Uno, P. J. Flatau, K. M. Markowicz, and P. K. Quinn (2003), A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations, J. Geophys. Res., 108(D23), 8661, doi:10.1029/2002JD003260.
Cooke, W. F., and J. J. N. Wilson (1996), A global black carbon aerosol model, J. Geophys. Res., 101, 19,395–19,409.
Crutzen, P. J., and M. O. Andreae (1990), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1,669-1,678.
Crutzen, P. J., and V. Ramanathan (2003), The Parasol Effect on Climate, Science, 302, 1,679-1,681.
Draxler, R. R. (1992), Hybrid single-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0-User’s guide and model description. NOAA Tech. Memo. ERL ARL-195, 26pp. and Appendices.
Draxler, R. R. (1996), Trajectory optimization for balloon flight planning. Weather and Forecasting, 11, 111–114.
Draxler, R. R., and G. D. Hess (1998), An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295-308.
Draxler, R. R. (2000), Meteorological Factors of Ozone Predictability at Houston, Texas, J. Air and Waste Management Assoc., 50, 259-271.
Draxler, R. R., D. A. Gillette, J. S. Kirkpatrick, and J. Heller (2001), Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos. Environ., 35, 4,315-4,330.
Draxler, R. R., and G. Rolph (2003), HYSPLIT4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, Air Resour. Lab., Natl. Oceanic and Atmos. Admin., Silver Spring, Md. (Available at http://www.arl.noaa.gov/ready/hysplit4.html).
Duncan, B.N., R.V. Martin, A.C. Staudt, R. Yevich, and J.A. Logan (2003), Interannual and Seasonal Variability of Biomass Burning Emissions Constrained by Satellite Observations. J. Geophys. Res.,108. doi:10.1029/2002JD002378.
Ferek, R. J., J. S. Reid, P. V. Hobbs, D. R. Blake, and C. Liousse (1998), Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, J. Geophys. Res., 103(D24), 32,107–32,118.
Fuelberg, H. E., C. M. Kiley, J. R. Hannan, D. J. Westberg, M. A. Avery, and R. E. Newell (2003), Meteorological conditions and transport pathways during the Transport and Chemical Evolution over the Pacific (TRACE-P) experiment, J. Geophys. Res., 108(D20), 8782, doi:10.1029/2002JD003092.
Grant, K. E., A. S. Grossman (1998), Description of a solar radiation transfer model for use in LLNL climate and atmospheric chemistry studies. Lawrence Livermore National Laboratory Report UCID-ID-129949.
Grant, K. E., C. C. Chuang, A. S. Grossman, and J. E. Penner (1999), Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols: parameterization of relative humidity effects and model results, Atmos. Environ., 33, 2,603-2,620.
Grell, G. A. (1993), Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 767-787.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102(D6), 6,831–6,864.
Hansen, J., T. Bond, B. Cairns, H. Gaeggler, B. Liepert, T. Novakov, and B. Schichtel (2004), Carbonaceous aerosols in the industrial era, EOS, Trans. AGU, 85, 241-244.
Haywood J. M., O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aserosol: a review. Reviews of Geophysics, 38, 513-543.
Haywood, J., S. Osborne, P. Francis, P. Formenti, and M. O. Andreae (2003), The mean physical and optical properties of biomass burning aerosols measured by C-130 aircraft during SAFARI-2000, J. Geophys. Res. 108(D3), 8488.
Heald, C. L., D. J. Jacob, P. I. Palmer, M. J. Evans, G. W. Sachse, H. B. Singh, D. R. Blake (2003), Biomass burning emission inventory with daily resolution: application to observations of Asia outflow. J. Geophys. Res., accepted March 7.
Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier (1997), Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102(D14), 16,911–16,922.
Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The software package OPAC, Bull. Am. Met. Soc., 79, 831-844.
Hobbs, P. V., J. S. Reid, R. A. Kotchenruther, R. J. Ferek, R. Weiss (1997), Direct radiative forcing by smoke from biomass burning. Science, 275, 1777-1778.
Hsu, N. C., J. R. Herman, J. F. Gleason, O. Torres, and C. J. Seftor (1999), Satellite detection of smoke aerosols over a snow/ice surface by TOMS, Geophys. Res. Lett., 26(8), 1165–1168.
Iacobellis, S. F., R. Frouin, and R. C. J. Somerville (1999), Direct climate forcing by biomass-burning aerosols: Impact of correlations between controlling variables, J. Geophys. Res., 104, 12,031–12,045.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001, The Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007, The Physical Science Basis, Summary for Policymakers, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Alley et al.
Jacob, D. J., J. H. Crawford, M. M. Kleb, V. S. Connors, R. J. Bendura, J. L. Raper, G. W. Sachse, J. C. Gille, L. Emmons, and C. L. Heald (2003), Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results, J. Geophys. Res., 108(D20), 9000, doi:10.1029/2002JD003276.
Jacobson, M. Z. (2000), A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27, 217-220.
Jacobson, M. Z. (2001a), Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res., 106(D2), 1,551–1,568.
Jacobson, M. Z. (2001b), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697.
Jacobson, M. Z. (2002), Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107(D19), 4410, doi:10.1029/2001JD001376.
Jacobson, M. Z. (2004), The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Jordan, C. E., J. E. Dibb, B. E. Anderson, and H. E. Fuelberg (2003), Uptake of nitrate and sulfate on dust aerosols during TRACE-P, J. Geophys. Res., 108(D21), 8817, doi:10.1029/2002JD003101.
Joseph, J. H., W. J. Wiscombe, and J. A. Weinman (1976), The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452-2459.
Kaufman, Y. J., L. A. Remer, R. D. Ottmar, D. E. Ward, R. -R. Li, R. Kleidman, R. S. Fraser, L. Flynn, D. McDougal, and G. Shelton (1996), Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment, in Biomass burning and Global change, edited by J. S. Levine, pp. 685-696, MIT Press, Cambridge, Mass.
Kaufman, Y. J., et al. (1998), Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment. J. Geophy. Res., 103, 31,783-31,808.
Kaufman, Y. J., D. Tanré, and O. Boucher (2002), A satellite view of aerosols in the climate system, Nature, 419, 215-223.
Keil, A., and J. M. Haywood (2003), Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties, J. Geophys. Res., 108(D13), 8467, doi:10.1029/2002JD002315.
Kirkevåg, A., and T. Iversen (2002), Global direct radiative forcing by process-parameterized aerosol optical properties, J. Geophys. Res., 107(D20), 4433, doi:10.1029/2001JD000886.
Lelieveld, J., et al. (2001), The Indian Ocean Experiment: widespread Air Pollution from South and Southeast Asia, Science, 291, 1,031-1,036.
Levine, J. S., W. R. Cofer, D. R. Cahoon, and E. L. Winstead (1995), Biomass Burning: A Driver for Global Change, Environmental Science and Technology, 29, No 3, 120A-125A.
Liao, H. and H. Seinfeld (1998), Effect of clouds on direct aerosol radiative forcing of climate, J. Geophy. Res., 103, 3,781-3,788.
Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner (2004), Can aerosols spin down the water cycle in a warmer and moister world?, Geophys. Res. Lett., 31, L06207, doi:10.1029/2003GL019060.
Liou, K. N. (2002), An introduction to atmospheric radiation, 2nd ed., International geophysics series, vol. 84, 583 pp., Academic Press, San Diego, California, USA.
Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101(D14), 19,411–19,432.
Liu, H., D. J. Jacob, I. Bay, R. M. Yantosca, B. N. Duncan, G. W. Sachse (2003), Transport pathways for Asian combustion outflow over pacific: Interannual and seasonal variations. J. Geophys. Res., accepted March, 2003.
Levine, J. S., W. R. Cofer, D. R. Cahoon, and E. L. Winstead (1995), Biomass Burning: A Driver for Global Change, Environmental Science and Technology, Volume 29, Number 3, pages 120A-125A.
Lohmann, U., and M. Wild (2005), Solar Dimming, Global Change NewsLetter, 63, 21-22.
Loughlin, P. E., T. Trautmann, A. Bott, W. G. Panhans, W. Zdunkowski (1997), The effect of different radiation model parameterizations on cloud evolution. Q. J. R. Meteorol . Soc., 123, 1,985–2,007.
Lucht, W., C. B. Schaaf, and A. H. Strahler (2000), An Algorithm for the retrieval of albedo from spaceusing semiempirical BRDF models, IEEE Trans. Geosci. Remote Sens., 38, 977-998.
Markowicz, K. M., P. J. Flatau, M. V. Ramana, P. J. Crutzen, and V. Ramanathan (2002), Absorbing mediterranean aerosols lead to a large reduction in the solar radiation at the surface, Geophys. Res. Lett., 29(20), 1,968, doi:10.1029/2002GL015767.
Maxwell-Meier, K., R. Weber, C. Song, D. Orsini, Y. Ma, G. R. Carmichael, and D. G. Streets (2004), Inorganic composition of fine particles in mixed mineral dust– pollution plumes observed from airborne measurements during ACE-Asia, J. Geophys. Res., 109, D19S07, doi:10.1029/2003JD004464.
Menon S., J. Hansen, L. Nazarenko, Y. Luo (2002), Climate effects of black carbon aerosols in China and India. Since, 297, 2,250-2,253.
Myhre, G., T. K. Berntsen, J. M. Haywood, J. K. Sundet, B. N. Holben, M. Johnsrud, and F. Stordal (2003), Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI-2000) experiment, J. Geophys. Res., 108(D13), 8501, doi:10.1029/2002JD002313.
Nakajima T. and M. Tanaka (1986), Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35, 13-21.
NASA Fact Sheet (2001), Biomass Burning: A Hot Issue in Global Change.
Novakov, T. and J. E. Penner (1993), Large contribution of organic aerosols to cloud-condensation-nuclei concentrations, Nature, 365, 823-826.
Peng, C. M. and N. H. Lin (2002), Long-range transport of Asian dust: An integrated modeling study. 6th International Aerosol Conference (IAC2002), 663-664.
Penner, J. E., R. E. Dickinson, and C. A. O’Neill (1992), Effects of aerosol from biomass burning on the global radiation budget, Science, 256, 1,432-1,434.
Penner, J. E., H. Eddleman, and T. Novakov (1993), Toward the development of a global inventory for black carbon emissions, Atmos. Environ., Part A, 27, 1,277–1,295.
Penner, J. E., C. Chuang, and K. Grant (1998), Climate forcing by carbonaceous and sulfate aerosols, Clim. Dyn., 14, 839-851.
Pinker, R. T., B. Zhang, and E. G. Dutton (2005), Do satellites detect trends in surface solar radiation?, Science, 308, 850-854.
Price, H. U., D. A. Jaffe, P. V. Doskey, I. McKendry, and T. L. Anderson (2003), Vertical profiles of O3, aerosols, CO and NMHCs in the northeast Pacific during the TRACE-P and ACE-Asia experiments, J. Geophys. Res., 108(D20), 8799, doi:10.1029/2002JD002930.
Radke, L. F., D. A. Hegg, J. H. Lyons, and J. H. Brock (1988), Airborne measurements on smoke from biomass burning. In: Hobbs, P. V., McCormic, M. P. (Eds.) Aerosols and Climate. A. Deepak Publishing, Hampton, VA, 411-422.
Radojevic, M., and K. S. Tan (2000), Impacts of biomass burning and regional haze on the pH of rainwater in Brunei Darussalam. Atmospheric Environment, 34 , 2,739-2,744.
Rajeev, K., V. Ramanathan, and J. Meywerk (2000), Regional aerosol distribution and its long-range transport over the Indian Ocean, J. Geophys. Res., 105(D2), 2,029–2,044.
Ramachandran, S., and A. Jayaraman (2003), Spectral aerosol optical depths over Bay of Bengal and Chennai: II—sources, anthropogenic influence and model estimates, Atmos. Environ., 37, 1,951-1,962.
Ramanathan, V., et al. (2001a), Indian Ocean Experiment (INDOEX): An integrated assessment of the climate forcing and effects of great Indo-Asian haze, J. Geophys. Res., 106, 28,371-28,289.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001b), Aerosol, Climate, and Hydrological Cycle. Since, 294, 2,119-2,124.
Reddy, M. S., and C. Venkataraman (2002), Inventory of aerosol and sulphur dioxide emissions from India. Part II-biomass combustion. Atmospheric Environment, 36 , 699-712.
Reddy, M. S., and O. Boucher (2004), A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model, J. Geophys. Res., 109, D14202, doi:10.1029/2003JD004048.
Reddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz (2005), Aerosol optical depths and direct radiative perturbations by species and source type, Geophys. Res. Lett., 32, L12803, doi:10.1029/2004GL021743.
Roderick, M. L., and G. D. Farquhar (2002), The cause decreased pan evaporation over the past 50 years, Science, 298, 1,410-1,411.
Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26, 3,105-3,108.
Ru, J., N. Takeuchi, T. Uezono, S. Kaneta, M. Minomura, H. Kuze, T. Takamura, A. Higurashi (2000), Optical properties of biomass burning smoke in South-East Asia studied by NOAA/AVHRR and ground-base monitoring. Adv. Space Res., 25, 1,029 -1,032.
Sapkota, A., et al. (2005), Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City, Environmental Science and Technology, 39, 24-32.
Satheesh, S. K., V. Ramanathan, X. Li-Jones, J. M. Lobert, I. A. Podgorny, J. M. Prospero, B. N. Holben, and N. G. Loeb (1999), A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data, J. Geophys. Res., 104(D22), 27,421–27,440.
Satheesh, S. K., and V. Ramanathan (2000), Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface, Nature, 405, 60-63.
Schaaf, C. B., et al. (2002), First Operational BRDF, Albedo and Nadir Reflectance Products from MODIS, Remote Sens. Environ., 83(1-2), 135-148.
Seinfeld, J. H., et al. (2004), ACE-ASIA—Regional climatic and atmospheric chemical effects of Asian dust and pollution, Bull. Am. Meteorol. Soc., 85(3), 367-380.
Sloane, C. S. (1983), Optical properties of aerosols – comparison of measurements with model calculations. Atmospheric Environment, 17, 409-416.
Streets, D. G., and S. T. Waldhoff (2000), Present and future emissions of air pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34, 363–374.
Streets, D. G., et al. (2003a), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.
Streets, D. G., K. F. Yarber, J. H. Woo, and G. R. Carmichael (2003b), Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochemical Cycles, 17(4), 1099, doi:10.1029/2003GB002040.
Streets, D. G., T. C. Bond, T. Lee, and C. Jang (2004), On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, D24212, doi:10.1029/2004JD004902.
Tahnk, W. R., and J. A. Coakley Jr. (2002), Aerosol optical depth and direct radiative forcing for INDOEX derived from AVHRR: Observations, January–March 1996–2000, J. Geophys. Res., 107(D19), 8010, doi:10.1029/2000JD000183.
Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben and S. Kinne (2002), Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model, J. of Climate, 15, 333-352.
Takemura, T., T. Nakajima, A. Higurashi, S. Ohta, and N. Sugimoto (2003), Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS), J. Geophys. Res., 108(D23), 8659, doi:10.1029/2002JD003210.
Trentmann, J., M. O. Andreae, H. F. Hobbs, R. D. Ottmar, T. Trautnmann (2002), Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res., 107, AAC 5-1 – 5-15.
Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256.
Wang S. H., N. H. Lin, M. D. Chou, and J. H. Woo (2007), Estimate of radiative forcing of Asian biomass burning aerosols during the period of TRACE-P, Journal of Geophysical Research. (in press)
Wehrli, C. (1985), Extraterrestrial solar spectrum, Publ. 615, World Radiat. Cent., Davos Drof, Switzerland.
Wigley, T. M. L., and S. C. B. Raper (1990), Natural variability of the climate system and diction of the greenhouse effect, Nature, 344, 324-327.
Wild, M. (1999), Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings, J. Geophys. Res., 104(D22), 27,361–27,372.
Wild, M. (2005a), Solar radiation budgets in atmospheric model intercomparisons from a surface perspective, Geophys. Res. Lett., 32, L07704, doi:10.1029/2005GL022421.
Wild, M., et al. (2005b), From dimming to brightening: decadal changes in solar radiation at Earth’s surface, Science, 308, 847-850.
Wild, O., and H. Akimoto (2001), Intercontinental transport of ozone and tits precursors in a 3-D global CTM, J. Geophys. Res., 106 (D21), 27,729-27,744.
Woo, J., et al. (2003), Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment, J. Geophys. Res., 108(D21), 8812, doi:10.1029/2002JD003200.
Xie, P., and P. A. Arkin (1996), Analyses of global monthly precipitation using gauge observations, satellite estimates and numerical model prediction, J. Climate., 9, 840–858.
Yonemura, S.,H. TSURUTA,T. Maeda, S. Kawashima, S. Sudo, M. Hayashi (2002), Tropospheric ozone variability over Singapore from August 1996 to December 1999. Atmospheric Environment, 36, 2,061-2,070.
Zhang, X. Y., Y. Q. Wang, D. Wang, S. L. Gong, R. Arimoto, L. J. Mao, and J. Li (2005), Characterization and sources of regional-scale transported carbonacaeous and dust aerosols from different pathways in coastal and sandly and areas of China. J. Geophys. Res., 110, D15301, doi:10.1029/2004JD005457.
吳承翰(2002), 亞洲沙塵暴之模擬,國立中央大學大氣物理研究所碩士論文。
林能暉、劉振榮、李崇德及嚴明鉦(2000), 東亞地區空氣污染物跨國長程傳輸對台灣地區之影響,EPA-89-FA11-03-76,行政院環境保護署。
張闊顯(2003), 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估,國立中央大學大氣物理研究所碩士論文。
指導教授 林能暉(Neng-Huei Lin) 審核日期 2007-3-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明