以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:88 、訪客IP:18.226.163.103
姓名 李佩娟(Pei-Chuan Lee) 查詢紙本館藏 畢業系所 大氣物理研究所 論文名稱 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本篇論文主旨在於研究有地形冷池以及無地形風暴兩種不同的初始條件下,如何透過一熱動力反演方法求得所需反演資料,再將反演出來的熱動力場重新置入模式中,進行資料同化的步驟,並藉此探討此一流程是否可行,且對資料同化後的結果有何助益。本研究使用RASTA(Radar Analysis System for Taiwan Area)的三維變分分析,其反演所用的所有動量及熱量方程均以追隨地勢座標表示;模式部分則是使用ARPS(Advanced Regional Prediction System)模式,是由美國CAPS(Center for Analysis and Prediction of Storms)以及奧克拉荷馬大學(University of Oklahoma)所研發的區域氣象模式。
由於真實大氣中缺乏高解析度的熱動力場觀測資料,本篇研究使用高解析氣象模式在理想地形下所模擬之冷池與無地形的風暴系統來驗證RASTA的熱動力反演方法,並估計其誤差。結果顯示,本方法反演的壓力與溫度場,其水平及垂直結構相較於模式結果都有不錯的一致性。
在資料同化結果的部分,將RASTA反演結果帶回ARPS模式中進行資料同化的方法是可行的,且同化後的結果也能模擬出不錯的p′和θ′,不過同化時需要有較準確的p′和θ′。要提高資料同化後結果的準確度,需要先有準確性佳的熱動力場,故在利用三維風場反演熱動力場的部分需要有更精準的計算公式。位溫擾動場θ′對於同化資料的誤差接受度較高,壓力擾動場p′則不是很理想,特別是在p′的SCC值低於0.9以下的時候。本研究的資料同化方法針對兩種不同的天氣系統雖然有顯著的改善結果,但還是有所限制;若初始場的差異過大,儘管有準確的熱動力場資訊,還是無法將兩者之間的差異修正回來。對於總降水量的同化模擬結果並沒有顯著的改變,還是跟每個個案的原始結果相似,推測其可能原因為加入同化的資訊沒有更新水氣場的訊息,故要改善降雨的部分,應該還要同化雷達回波等的資訊,才能達到此目的。
整體來說,個案一(冷池)與個案二(Del City storm)在本研究的資料同化方法中,對於改善p′和θ′的模擬都有不錯的表現。摘要(英) Under two conditions of a cold pool with terrain and a storm without terrain, this study attempts to establish a thermodynamic retrieval method to get all datasets we needed. After getting all retrieval data, we put back all the thermal retrieval fields (p′ and θ′) into model again and continue doing the simulation. Finally, we discuss whether the procedure is feasible and how much advantages we get from the results in the data assimilation. This research uses RASTA (Radar Analysis System for Taiwan Area) 3-D variational method, and all momentum and thermodynamic equations used in the retrieval method are expressed in a terrain-following coordinate system. The model we use here is called ARPS(Advanced Regional Prediction System), it is created by CAPS (Center for Analysis and Prediction of Storms) and University of Oklahoma.
Due to lack of high-resolution thermodynamic observational data in real atmosphere, this research uses ARPS model to simulate a cold pool with ideal terrain and a storm without terrain, and then tests the performance of this method and estimates the error. The results show that, the thermodynamic fields retrieved from this method have good consistencies in horizontal and vertical structures.
For the data assimilation results, putting the RASTA retrieval data back to the ARPS is feasible, and this method can simulate reasonable p′ and θ′ if we have good initial p′ and θ′. In order to enhance the accuracy of the data assimilation results, first we need to have better p′ and θ′. Therefore, a finer computational formula is required in retrieving thermodynamic structure by the use of three-dimensional wind field. The θ′ can accept higher errors in the assimilation data, however, the p′ is not very ideal, especially when the SCC value of p′ is lower than 0.9. Although the data assimilation method in this research has improvement in the results for two different conditions, but there still has limit. If the difference in the initial fields is large, it is difficult to amend the difference even we have correct thermodynamic fields. In the data assimilation of precipitation, the simulation result changes only a little. We guess the possible reason is that the assimilation does not update the information of moisture. Therefore, if we want to improve the rain field, radar reflectivity should be taken into account in the assimilation procedure.
Over all, the data assimilation method in this research improves both the p′ and θ′ in both case one (cold pool) and case two (Del City storm).關鍵字(中) ★ 三維變分 關鍵字(英) ★ 3D-var
★ RASTA
★ ARPS論文目次 中文摘要-------------------------------------------------------i
英文摘要-----------------------------------------------------iii
誌謝-----------------------------------------------------------v
目錄----------------------------------------------------------vi
圖表說明----------------------------------------------------viii
第一章 前言---------------------------------------------------1
1.1 研究動機----------------------------------------------1
1.2 論文回顧----------------------------------------------1
1.3 研究方向----------------------------------------------4
第二章 模式與反演方法介紹-------------------------------------5
2.1 模式簡介----------------------------------------------5
2.2 反演方法----------------------------------------------8
2.2.1 動量及熱力方程式------------------------------------8
2.2.2 價值函數的形式--------------------------------------9
第三章 模擬個案介紹------------------------------------------12
3.1 個案一天氣現象描述-----------------------------------12
3.2 個案二天氣現象描述-----------------------------------13
3.2.1 中尺度天氣概況-------------------------------------13
3.2.2 風暴發展史-----------------------------------------14
3.2.3 風暴結構-------------------------------------------15
3.3 個案三描述(冷池實驗測試個案)-------------------------17
3.4 個案四描述(熱胞實驗測試個案)-------------------------18
3.5 個案五描述(熱胞實驗測試個案)-------------------------18
第四章 實驗設計與結果----------------------------------------19
4.1 實驗設計概述-----------------------------------------19
4.2 實驗誤差之計算方式-----------------------------------20
4.3 熱動力場反演與反演資料同化實驗-----------------------21
4.3.1 冷池實驗一:個案一之以理想的F、G、H和TE反演-------21
4.3.2 冷池實驗二:個案一同化冷池實驗一反演之熱動力場資訊--22
4.3.3 冷池實驗三:個案三同化冷池實驗一反演之熱動力場資訊--22
4.3.4 冷池實驗四:個案一之以三維風場估計F、G和H反演------24
4.3.5 冷池實驗五:個案一同化冷池實驗四反演之熱動力場資訊--25
4.3.6 冷池實驗六:個案一之以三維風場加入亂流項以及最小平方濾波估計F、G和H反演----------------------------------26
4.3.7 冷池實驗七:個案一同化冷池實驗六反演之熱動力場資訊--26
4.3.8 熱胞實驗一:個案二之以理想的F、G、H和TE反演---------27
4.3.9 熱胞實驗二:個案二同化熱胞實驗一反演之熱動力場資訊--28
4.3.10 熱胞實驗三:個案四同化熱胞實驗一反演之熱動力場資訊-29
4.3.11 熱胞實驗四:個案五同化熱胞實驗一反演之熱動力場資訊-31
第五章 結論與未來展望----------------------------------------33
5.1 結論-------------------------------------------------33
5.2 未來展望---------------------------------------------34
參考文獻------------------------------------------------------35
附圖及附表----------------------------------------------------38參考文獻 賴忠瑋,2004:在地形上由都卜勒風場反演熱動力場。國立中央大學碩士論文,86pp。
鄧仁星,2001:利用三維變分的新熱動力反求法-應用於真實的雷達風場及其與傳統方法之比較。第十五~十六屆天氣分析與預報研討會,2001年11月16日,台灣台北,247-254
Bielli, S. and F. Roux, 1999: Initialization of a Cloud-Resolving Model with Airborne Doppler Radar Observations of an Oceanic Tropical Convective System. Mon. Wea. Rev., 127, 1038-1055.
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Guo, Y. R., Y.-H. Kuo, J. Dudhia, D. Parsons, and C. Rocken, 2000: Four-Dimensional Variational Data Assimilation of Heterogeneous Mesoscale Observations for a Strong Convective Case. Mon. Wea. Rev., 128, 619-643.
Hane, R., B. Wilhelmson and T. Gal-Chen, 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564-576.
_____, and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42,18-35.
Klemp, J. B., and R. B. Wilhelmson, 1978a: The simulation of threedimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.
_____, and _____, 1978b: Simulations of Right- and Left-Moving Storms Produced Through Storm Splitting. J. Atmos. Sci., 35, 1097–1110.
_____, and _____, and P. S. Ray, 1981: Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. J. Atmos. Sci., 38,1558-1580.
_____, and R. Rotunno, 1983: A Study of the Tornadic Region within a Supercell Thunderstorm. J. Atmos. Sci., 40, 359-377.
Liou, Y. C., 2001: The Derivation of Absolute Potential Temperature Perturbations and Pressure Gradients from Wind Measurements in Three-Dimensional Space. J. Atmos. Oceanic Technol., 18, 577–590.
_____, T.-C. Chen Wang, and K.-S., Chung, 2003: A three-dimensional variational approach for deriving the thermodynamic structure using Doppler wind observations─An application to a subtropical squall line. J. Appl. Meteor., 42, 1443-1454.
Lin, Y., P. S. Ray, and K. W. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar-derived fields. Mon. Wea. Rev., 121, 2757–2775..
Liu, D. C., and J. Nocedal, 1988: On the limited memory BFGS method for large scale optimization. Tech. Rep. NAM 03, Department of Electric Engineering and Computer Science, Northwestern University, 26 pp. [Available from Department of Electric Engineering and Computer Science, Northwestern University, Evanston, IL 60208.]
Parsons, D. B., C. G. Mohr, and T. Gal-Chen, 1987: A severe frontal
rainband. Part III: Derived thermodynamic structure. J. Atmos.
Sci., 44, 1615–1631.
Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.
Roux, F., J. Testud, M. Payen and B. Pinty, 1984: West Africa squall-line thermodynamic structure retrieved from Dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3121.
_____, 1985: Retrieval of thermodynamic fields from Multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 2142-2157.
_____, 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406-426.
_____, and J. Sun, 1990: Single-Doppler observations of a West African squall line on 27-28 May 1981 during COPT 81: Kinematics, thermodynamics and water budget. Mon. Wea. Rev., 118, 1826-1854.
Sun, J., and F. Roux, 1988: Thermodynamic structure of the trailing stratiform regions of two West African squall lines. Ann. Geophys., 6, 659-670.
_____ and R. A. Houze Jr., 1992: Validation of thermodynamic retrieval technique by application to a simulated squall line with trailing stratiform precipitation. Mon. Wea. Rev., 120, 1003-1018.
_____ and A. Crook, 1994: Wind and thermodynamic retrieval from
single-Doppler measurements of a gust front observed during
Phoenix II. Mon. Wea. Rev., 122, 1075–1091.
Teng, J.-H., C.-S. Chen, T.-C. Chen Wang, and Y.-L. Chen, 2000: Orographic effects on a squall-line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138.
Wilhelmson, R. B. and, J. B. Klemp, 1978: A Numerical Study of Storm Splitting that Leads to Long-Lived Storms. J. Atmos. Sci., 35, 1975–1986.
Xiao, Q., Y.-H. Kuo, Y. Zhang, D. M. Barker, and D.-J. Won, 2006: A tropical cyclone bogus data assimilation scheme in the MM53D-Var system and numerical experiments with Typhoon Rusa (2002) near landfall. J. Met. Soc. Japan, 84, 671-689.指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2007-7-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare