摘要(英) |
This study uses the Lagrangian particle dispersion model – Windmodel to simulate each day during August 2003 to 2006. Through the distribution of the particles we discuss the relationship between the summer surface circulation and convection in Taiwan.
In order to understand the accumulation of the particles in dispersion process, we choose the particle calculating domain (120.35°E-120.90°E,23.6°N-24.0°N) , because there is the area of most highly frequency of lightning occurrences during August 2003 to 2006. We divide the particle calculating domain into the rectangle areas which have the same width of longitude. We can know the particles variation in the calculating domain in a day through the calculation of the particles variation in different areas.
First, this study chooses the cases which have more lightning occurrences because of the convection systems development in the afternoon and have the least lightning occurrences of August 2006. Then we calculate the particles variation of the case that has more (lower) lightning occurrences in twenty-four hours. Next, we calculate the correlation coefficient Ra(Rb) of the particles variation of the case that has more (lower) lightning occurrences and the particles variation of the other days in whole calculating domain. The result reveals that some cases with high Ra value have the development of the convection system and several thousand lightning occurrences in the afternoon in Taiwan. However, these cases with high Ra value also have high Rb value.
In the following discussion, we use the several particles variation of the different particle calculating domains. To define the correlation coefficient R1(R2) is the correlation of the particles variation of the case that has more (lower) lightning occurrences and the particles variation of the other days in A01 domain(120.35°E-120.40°E,23.6°N-24.0°N). Then we calculate the correlation of R1(R2) and daily lightning occurrences during August 2003 to 2006. The best correlation is 0.5 between R1 and the daily lightning occurrences in the area of 120°E-121°E, 23°N-24°N. It reveals that the accuracy is about 50% if we use R1 to judge the frequency of daily lightning occurrences in a day.
In case study, we discuss a case that the particles increase in the afternoon, and it has more occurrences of lightning near the particle calculating domain at the same time. We see the impact of the sea-breeze circulation on particles through the two-dimensional particles distribution figures. It shows the most occurrences of lightning near the particle calculating domain in a day, almost the same time the particles have a peak in the divided particle calculating domain which the location is in the land and far away the ocean. |
參考文獻 |
郭美瑜,2008:春雷到打亂貓纜營運 捷運麟光站一度沒亮光。中央社新聞報導。
中央氣象局網頁,2008,http://www.cwb.gov.tw。
The FLEXTRA and FLEXPART homepage by Andreas Stohl and others,2005,http://zardoz.nilu.no/~andreas/flextra+flexpart.html。
行政院環保署,2006:空氣品質監測報告95年年報。行政院環保署。
中央氣象局第二組,1994:中央氣象局台灣西部地區自動雨量及氣象遙測系統簡介。氣象學報,40,1,47-52。
王國英,2006:雷雨預測應用於電力調度業務之系統建置。台灣電力公司,台北,台灣,124pp。
陳文恭與曾憲瑗,1993:台灣地區閃電之雷擊之研究。行政院國家科學委員會,防災科技研究報告82-21號,P84。
林熹閔,1996:1994年南台灣夏季午後對流之研究。國立台灣大學大氣科學研究所博士論文,243pp。
林熹閔,1999:雲對地閃電與降水關係之研究。大氣科學,27,1,75-98。
林熹閔與郭鴻基,1996:1994年南台灣夏季午後對流之研究。大氣科學,24,4,249-280。
吳璧如,1999:細說閃電。物理雙月刊,21,543-549。
李育明,1997:克利金法於環境規劃之應用領域探討。中國環境工程學刊,7,3,241-251。
李佳佩,2003:TRMM-LIS 衛星閃電資料之分析研究。國立中央大學大氣物理研究所碩士論文,107pp。
譚振威,2006:台灣地區閃電與降雨的分類及其氣候特徵。國立中央大學大氣物理研究所碩士論文,120pp。
張榕書,2006:1994-2004年台灣近地面臭氧特性分析。國立中央大學大氣物理研究所碩士論文,89pp。
洪景山,2002:雲對地閃電和雷達回波參數之相關:個案研究。大氣科學,30,1,21-34。
張凱軍,1999:台灣中南部暖季午後對流系統之環境條件研究。國立台灣大學大氣科學研究所博士論文,158pp。
戚啟勳,1979:雷雨內帶電過程發生之研究成果(譯)。氣象學報,25,1,35-38
謝信良、簡國基與王時鼎,2003:潭美颱風高雄豪雨事件之天氣分析。大氣科學,31,1,1-15。
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
Chen, G. T. J., and C. C. Wang, 1992: The composite structure of mesolows accompanying heavy rainfall in the Taiwan Mei-Yu season. TAO, 3, 533–556.
Deutsch, C. V., and A. G. Journel (1992), GSLIB: Geostatistical Software Library and User’s Guide, 340 pp., Oxford Univ. Press, New York.
Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall, J. Geophys. Res., 103(D12), 14,025– 14,040.
Stohl, A., M. Hittenberger, and G. Wotawa (1998): Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiments. Atmos. Environ. 32, 4245-4264.
Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, and Z.-I. Kawasaki (2001), A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data, J. Geophys. Res., 106(D20), 24,089– 24,095.
Wang, K.-Y., 2005: A 9-year climatology of airstreams in East Asia and implications for the transport of pollutants and downstream impacts, J. Geophys. Res., 110, D07306, doi:10.1029/2004JD005326.
Wang, K.-Y., and S.-A. Liao, 2006: Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2–4 July 2004 severe convective system over Taiwan area, J. Geophys. Res., 111, D05206, doi:10.1029/2005JD006411.
Wang, K.-Y., 2007: Long-range transport of the April 2001 dust clouds over the subtropical East Asia and the North Pacific and its impacts on ground-level air pollution: A Lagrangian simulation, J. Geophys. Res., 112, D09203, doi:10.1029/2006JD007789.
Zipser, E. J., and K. R. Lutz (1994), The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon, Wea. Rev., 122, 1751–1759. |