博碩士論文 956201015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:18.225.54.85
姓名 林東逸(Dong-yi Lin)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 衛星資料估算颱風旋轉與登陸強度衰減在熱帶氣旋降水潛勢計算之應用
相關論文
★ 應用SSM/I衛星資料於西太平洋颱風特性之分析★ 應用衛星資料於熱帶氣旋之環境場分析
★ 衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用★ 應用SSM/I衛星資料分析桃芝與納莉颱風之降雨及海氣參數的變化
★ 利用Spot 4衛星的Vegetation資料比較NDVI, ARVI, 及AFRI植被指數與氣溶膠厚度之關係★ 應用衛星資料分析颱風降雨與颱風強度變化之關係
★ 應用SSM/I衛星資料於颱風中心定位及最大風速估算★ 應用衛星資料分析海氣參數與颱風強度變化之關係
★ MODIS在生質燃燒監測之應用研究★ 應用SSM/I衛星觀測資料估算颱風定量降水
★ AMSU衛星資料反演大氣溫濕剖面及其在颱風強度估算上之應用★ 利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係
★ 模式和SSM/I客觀潛力指數在中尺度對流系統預報上之應用★ SSM/I衛星資料估算之客觀潛力指數與颱風強度變化之關係
★ 應用SSM/I衛星資料分析颱風形成之激發機制★ 衛星資料估算颱風旋轉及強度變化在熱帶氣旋定量降雨預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來微波頻道解析度提昇及其可透雲性,對於反演颱風降雨率之準確性有不錯的結果。Kidder et al.(2005)利用微波頻道優點發展一個快速實用方法估算降雨。Kidder et al.(2005)利用SSM/I、TMI及AMSU等被動式微波資料估算熱帶氣旋降雨,參考官方預報熱帶氣旋路徑資料,利用平移方法預測24小時後熱帶降水潛勢(Tropical Rainfall Potential,TRaP),但此方法沒有考慮熱帶氣旋旋轉所造成的降雨空間分布改變,且忽略了熱帶氣旋登陸後強度衰減產生降雨變化的事實。
Kaplan and DeMaria (1995)發展出一套簡易模式以exponential decay equation關係來推估熱帶氣旋登陸平原後強度變化,本研究進ㄧ步應用上述關係式並加以改進成可預測颱風登陸後有地形影響之強度變化。研究結果顯示:登陸平原颱風個案,估算強度之平均絕對誤差為4.48kt ;登陸丘陵地形颱風個案,估算強度之平均絕對誤差為6.73kt。本研究使用SSM/I衛星觀測資料反演降雨率,推估1990~2004年期間西北太平洋颱風登陸中國大陸華南地區陸地後的強度變化,再加入Kidder et al.(2005)考慮颱風平移過程與Liu et al.(2008)考慮颱風旋轉對降雨造成的影響,以預測未來6小時的累積降雨,並以中國大陸地面測站降雨資訊做驗證。研究結果發現:只考慮颱風平移時,其6小時累積降雨和測站觀測資料的相關係數為0.68,若同時考慮颱風平移、旋轉及強度變化相關係數增加為0.75,故考慮颱風的旋轉及強度變化有助於提昇降雨估算之準確度。
摘要(英) In the past decades, microwave sensors have become an important tool in typhoon rainfall monitoring due to the cloud transparency capacity and resolution improvement. Kidder et al. (2005) used passive microwave data, such as SSM/I, TMI and AMSU, to predict the 24-hour later tropical cyclone rainfall potential (TRaP) via a simple cyclone shift-motion assumption, along with the official cyclone track prediction results. However, their method didn’t take into account the cyclone intensity and cyclone rotation changes, which could alter the rainfall spatial patterns .
Based on the TRaP method, this research factors in the cyclone intensity changes after making landfall via an exponential decay equation(Kaplan and DeMaria, 1995). The intensity estimations reveal that the mean absolute errors (MAE) are 4.48kt and 6.73kt for plain and hill regions, respectively. In addition, the cyclone rotation effect on the rainfall patterns is considered (Liu et al., 2008), as well. The landfalling tropical cyclones in the southeastern China between 1990 to 2004 were analyzed, where their respective 6-hour later rainfall rates were predicted. The projected rainfall was verified by ground weather station data. Results reveal that the correlation is 0.68 when the shift-motions are only considered, and is 0.75 when the tropical cyclones’ intensity and rotation changes are also taken into account, it can further improve the TRaP method accuracy.
關鍵字(中) ★ 遞減方程式
★ 熱帶降水潛勢
關鍵字(英) ★ decay equation
★ Tropical Rainfall Potential( TRaP)
論文目次 摘要....................................................................................................................I
英文摘要……………………………………………………………………..II
致謝………………………………………………………………………….III
目錄.................................................................................................................IV
表目錄...........................................................................................................VII
圖目錄..............................................................................................................X
第一章 緒論.....................................................................................................1
1.1 前言..............................................................................................1
1.2 文獻回顧......................................................................................2
1.3 研究動機與目的..........................................................................5
第二章 資料蒐集.............................................................................................8
2.1 地球同步衛星資料......................................................................8
2.1.1 GOES-9衛星.....................................................................8
2.1.2 MTSAT衛星.....................................................................9
2.2 SSM/I衛星資料.........................................................................9
2.3 JTWC最佳路徑資料...............................................................11
2.4 中國大陸測站雨量資料............................................................11
第三章 研究基礎及方法...............................................................................13
3.1 Ferraro降雨反演式.....................................................................13
3.2 颱風移動方向與移動速度與旋轉角度....................................15
3.2.1 颱風移動方向與移動速度.............................................15
3.2.2 估算颱風旋轉角度.........................................................15
3.3 估算熱帶氣旋登陸後強度變化................................................16
3.3.1 分類不同登陸地形之高度值.........................................17
3.3.2 颱風登陸平原之強度估計方程式…………………….18
3.3.3 颱風登陸丘陵地形之強度估計方程式…………….....18
3.4 颱風強度與降雨之關係..........................................................19
第四章 結果分析與個案討論...................................................................... 22
4.1 估算登陸後熱帶氣旋強度變化之結果討論............................22
4.1.1 榴槤颱風(2001)............................................................22
4.1.2 玉兔颱風(2001)............................................................23
4.1.3 伊布都颱風(2003)........................................................23
4.1.4 柯羅旺颱風(2003)........................................................23
4.1.5 杜鵑颱風(2003)............................................................24
4.1.6 馬莎颱風(2005)............................................................24
4.1.7 卡努颱風(2005)…………………................................24
4.1.8 桑美颱風(2006)…………………................................25
4.2 平移過程分別考慮颱風旋轉、旋轉加強度變化與強度
變化預測降雨之結果.............................................................25
4.2.1 榴槤颱風(2001)............................................................25
4.2.2 玉兔颱風(2001)............................................................26
4.2.3 伊布都颱風(2003)........................................................27
4.2.4 柯羅旺颱風(2003)........................................................28
4.2.5 杜鵑颱風(2003)............................................................29
4.2.6 馬莎颱風(2005)............................................................30
4.2.7 卡努颱風(2005)…………………................................30
4.2.8 桑美颱風(2006)…………………................................31
4.3 整體結果討論............................................................................32
第五章 結論與未來展望...............................................................................33
參考文獻.........................................................................................................36
參考網站.........................................................................................................40
附表.................................................................................................................41
附圖.................................................................................................................68
參考文獻 何姿儀,2005 : 應用SSM/I衛星觀測資料估算颱風定量降水。國立中央大學大氣物理研究所碩士論文,台灣中壢,92頁。
陳嬿如,2007: 衛星資料估算颱風旋轉及強度變化在熱帶氣旋定量降雨預測之研究。國立中央大學大氣物理研究所碩士論文,台灣中壢,90頁。
Alliss, R. J., S. Raman, and S. W. Chang, 1992: Special Sensor Micro
-wave/Imager(SSM/I) observations of hurricane Hugo(1989) .
Mon. Wea. Rev., 120, 2723–2737
Chiu, L. S., G. R. North, D. A. Short, and A. McConnell, 1990:Rain estimation from satellites:effect of finite field of view. J. Geophys. Res., 95, 2177–2185.
DeMaria, M., J. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses. J. Appl. Meteor., 45, 491–499.
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting
from imagery. Mon. Wea. Rev., 103, 420–430.
Ferraro, R. R., and G. F. Marks, 1995:The development of SSM/I rain rate retrival algorithms using ground based radar measurements. J. Atmos. Oceanic. Technol., 12, 755–770.
Ferraro, R. R., 1997:SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16715–16735.
Grody, N. C., 1991:Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 7423–7435.
Hollinger, J., R. Lo, G. Poe, R. Savage, and J. Pierce, 1987:Special Sensor Microwave/Imager User’s Guide. Naval Research Laboratory Washington, D.C., 120 pp.
Jones, T. A., D. Cecil, and M. DeMaria, 2006: Passive- microwave enhanced Statistical Hurricane Intensity Prediction Scheme. Wea.
Forecasting, 21, 613–635.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004:CMORPH:a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503.
Kaplan, J., and M. DeMaria, 1995: A simple empirical model for pre- dicting the decay of tropical cyclone winds after landfall.
J. Appl. Meteor., 34, 2499–2512.
Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone
winds after landfall in the New England area. J. Appl. Meteor.,
40, 280–286.
Kidder, S. Q., S. J. Kusselson, J. A. Knaff, R. R. Ferraro, R. J.
Kuligowski and M. Turk, 2005: The tropical rainfall potential
(TRaP) technique. Part I : Description and examples. Wea.
Forecasting, 20, 456–464.
Liu, G. R., C. C. Chao and C. Y. Ho, 2008: Applying satellite-estimated
storm rotation speed to improve typhoon rainfall potential
technique. Wea. Forecasting, 23, 259–269.
Lonfat, M., Frank D. Marks, Jr., and S. S. Chen, 2004: Precipitation
distribution in tropical cyclones using the tropical rainfall
measuring mission (TRMM) microwave imager: a global
perspective. Mon. Wea. Rev., 132, 1645–1660
Rao, G. V., and P. D. MacArthur, 1994:The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity. Amer. Meteor. Soc., 122, 1568–1574.
Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave
radiometer. Mon. Wea. Rev., 109, 506–521.
Rodgers, E. B., and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor., 33, 129–139.
Rodgers, E. B., and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor., 34, 2587–2599.
Smith, E. A., and A. Mugnai, 1988: Radiative transfer to space through a
precipitation cloud at multiple microwave frequencies. Part II:results and analysis. J Appl. Meteor., 27, 1074–1091.
Vickery, P. J., 2005: Simple empirical models for estimating the increase
in the central pressure of tropical cyclones after landfall along the
coastline of the United States. J. Appl. Meteor., 44, 1807–1826.
Wilheit, T. T., and A. T. C. Chang, 1980: An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio. Sci., 15, 525–544.
Wong, Martin L. M., Johnny C. L. Chan, and W. Zhou, 2008: A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the south china coast. J Appl. Meteor., 47, 326–338
Xu, L., X. Gao, S. S., P. A. Arkin, and B. Imam, 1999:A microwave infrared threshold technique to improve the Goes precipitation index. J. Appl. Meteor., 38, 569–579.
指導教授 劉振榮(Gin-rong Liu) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明