以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:112 、訪客IP:3.145.75.49
姓名 劉豫臻(Yu-Jhen Liou) 查詢紙本館藏 畢業系所 大氣物理研究所 論文名稱 聖帕颱風模擬的位渦反演之診斷分析 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 過去許多研究指出,位渦反演是良好的診斷工具,能研究特定天氣系統與現象,而Wang and Zhang(2003)發展出限制較少的位渦反演方法,因此能利用位渦反演法深入研究颱風內核結構,本研究將使用Wang and Zhang 所提出之位渦反演法,及片斷位渦概念對模擬之颱風進行診斷。想藉以瞭解颱風內部結構及非對稱平衡場和強度的關係。
平衡流場的部分顯示可良好的反演原始颱風的流場,但在低層輻合和高層輻散會有比較大的誤差,低層主要是摩擦力從低層解析度較高的模式場內插到解析度較差的虛高座標,高層差異主要為較大的靜力穩定度和絕對渦度為正的假設。儘管有這些限制,結果顯示在較強及快速發展階段都能良好的反演出來。
接著使用反演的平衡流場進一步計算準平衡流場,結果顯示,颱風的流場有很大的量是準平衡的,並將流場分成潛熱釋放、摩擦力過程、乾動力過程的貢獻。潛熱會造成下層輻合與上層輻散及眼牆的上升運動,摩擦力作用造成低層的輻合與眼中上升氣流類似 Ekman pumping,而乾動力過程則與風切作用有關,風切作用的次環流可減少大尺度環境風切的破壞性作用,但也可能與颱風流場的不對稱分布有關。
為了研究非對稱環流分布,使用片斷位渦概念將內部颱風的位渦擾動分成眼牆正的位渦擾動、眼牆負的位渦擾動及眼的擾動。結果顯示去除眼的位渦擾動後,颱風眼牆環流的分布與大尺度環境駛流風場的方向有關,環境風方向的右(左)側大致上為負(正)的位渦擾動分布,反演出正(負)的非對稱壓力擾動及反氣旋(氣旋)擾動風場,而負的非對稱壓力擾動的分布則和颱風的垂直運動位置一致,三個片斷疊加後,在颱風中心擾動風場方向會與環境風一致。
摘要(英) Many studies demonstrated that potential vorticity (PV) inversion is a good diagnostic tool to study specific weather systems and phenomena. This study uses the PV inversion proposed by Wang and Zhang (2003) with piecewise PV diagnosis to investigate the dynamics of the simulated typhoon for understanding how the intensity of the typhoon is related to the internal structure and the asymmetric balanced flow.
Our inversion shows that the balanced flow could well recover the characteristics of the original flow except for the low-level convergence and high-level divergence. They could be attributed respectively to the use of reduced vertical resolution at low levels and the assumptions of the required nonnegative absolute vorticity and larger static stability at high levels, respectively. In spite of these restrictions, the inversion results show that the original flow is well inverted at the strong and fast-developing stage of typhoon.
The results show that quasi-balanced dynamics determines the typhoon flow to a large extent compared to the flow predicted by the model primitive equations. With the quasi-balanced flow calculated from PV inversion, the vertical motions can be attributed to different contributions from latent heating, friction, and the dry dynamic processes. The latent heating leads to low-level convergence, high-level divergence and vertical motion of eyewall. The friction causes the radial inflow in PBL to behave like the Ekman pumping. The dry dynamic processes are also influenced by the vertical shear. The shear-induced flow could reduce the destructive effects of the large-scale environmental shear but may be related to the asymmetric distribution of the flow.
In order to study the asymmetric flow, the total PV perturbations are divided into positive PV and negative PV on the eyewall, and PV on the eye. It is shown that after removing the PV on the eye, the distribution of the inverted flow for each PV piece is related to the large-scale environmental steering flow. There are positive (negative) PV perturbations left (right) of the steering flow direction that inverts the negative (positive) pressure perturbation and cyclonic (anti-cyclonic) flow. The superimposed inverted flow from the three piecewise PVs inside the eyewall is approximately in the same direction of the steering flow, indicating that the outer PVs may not play an important role.
關鍵字(中) ★ 片斷位渦
★ 位渦反演關鍵字(英) ★ piecewise potential vorticity
★ potential vorticity inversion論文目次 中文摘要 …………………………………………… i
英文摘要 …………………………………………… ii
致謝 …………………………………………… iii
目錄 …………………………………………… iv
圖目錄 …………………………………………… v
符號說明 …………………………………………… xi
一、緒論 …………………………………………… 1
1.1前言 …………………………………………… 1
1.2文獻回顧 …………………………………………… 1
1.3研究動機 …………………………………………… 3
二、研究方法 …………………………………………… 4
2.1位渦反演 …………………………………………… 4
2.2準平衡ω方程 …………………………………………… 8
2.3片斷位渦反演 …………………………………………… 9
三、實驗方法與模擬結果 …………………………………………… 12
3.1 WRF模式簡介 …………………………………………… 12
3.2資料來源 …………………………………………… 13
3.3模擬結果 …………………………………………… 13
3.4實驗設計 …………………………………………… 14
四、反演結果 …………………………………………… 16
4.1平衡流場的分析 …………………………………………… 16
4.2準平衡流場分析 …………………………………………… 17
4.3片斷位渦反演的片斷選擇方式探討 …………………………………………… 20
4.4片斷位渦反演分析 …………………………………………… 22
五、結論 …………………………………………… 26
參考文獻 …………………………………………… 28
附錄一 …………………………………………… 31
附錄二 …………………………………………… 32
附錄三 …………………………………………… 35
圖 …………………………………………… 36
參考文獻 參考文獻
Arnason, G., 1958: A convergent method for solving the balance equation. J. Meteor., 15, 220-225.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929- 1953.
—— , 1992a: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397-1411.
——, 1992b: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 2409-2428.
—— , E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamics nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 3-26.
Holland, G. J., and G. S. Dietachmayer, 1993: On the interaction of tropical-cyclone-scale vortices. III: Continuous barotropic vortices. Quart. J. Roy. Meteor. Soc., 119, 1381-1398.
Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19–60.
Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 2433–2451.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential-vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.
Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942
McWilliams, J. C., 1985: A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci., 42, 1773–1774.
Mö ller, J. D., and S. C. Jones, 1998: Potential vorticity inversion for tropical cyclones using the asymmetric balance theory. J. Atmos. Sci., 55, 259–282.
——, and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881.
Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55, 2193–2200.
Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci., 54, 479–497.
Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.
Schubert, W. H., and B. T. Alworth, 1987:Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147-162.
——, S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo,2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148-3157.
Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 3322–3335.
——, and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123, 69-92.
——, 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 1497-2508.
—— , and J. L. Franklin, 1999: Potenial vorticity asymmetries and tropical cyclone motion. Mon. Wea. Rev., 127, 124-131.
Wang, X., and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: formulation and quasi-balanced flow. J. Atmos. Sci., 53, 3313-3332.
Wu, C.-C., and K. A. Emanuel,1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 69-92.
——, and —— , 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93-109.
Zhang, D.-L., Y.-Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992) . Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772-3788.
—— , —— , and —— , 2001: A multiscale numerical study of Hurricane Andrew (1992) . Part IV: Unbalanced Flows. Mon. Wea. Rev., 129, 92-107.
——, —— , and C. Q. Kieu, 2006:Potential vorticity diagnosis of simulated hurricane. Part II: quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 2898-2914.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2009-7-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare