參考文獻 |
[1] Achterberg, A., Blandford, R. D., and Periwal, V. Two-Fluid
Models Of Cosmic Ray Shock Acceleration. Astronomy and Astrophysics
132 (1984), 97-104.
[2] Aharonian, F. A.and Akhperjanian, A. G., Aye, K.,
Bazer-Bachi, A. R., Beilicke, M., Benbow, W., Berge,
D., Berghaus, P., Bernlohr, K., Bolz, O., Boisson, C.,
Borgmeier, C., Breitling, F., Brown, A. M., Bussons Gordo,
J., Chadwick, P. M., Chitnis, V. R., Chounet, L., Cornils, R.,
Costamante, L., Degrange, B., Djannati-Ata, A., Drury,
L. O., Ergin, T., Espigat, P., Feinstein, F., Fleury, P.,
Fontaine, G., Funk, S., Gallant, Y. A., Giebels, B.,
Gillessen, S., Goret, P., Guy, J., Hadjichristidis, C.,
Hauser, M., Heinzelmann, G., Henri, G., Hermann, G., Hinton,
J. A., Hofmann, W., Holleran, M., Horns, D., de Jager,
O. C., Jung, I., Khelifi, B., Komin, N., Konopelko, A.,
Latham, I. J., Le Gallou, R., Lemoine, M., Lemi ere, A.,
Leroy, N., Lohse, T., Marcowith, A., Masterson, C., Mc-
Comb, T. J. L., de Naurois, M., Nolan, S. J., Noutsos, A.,
Orford, K. J., Osborne, J. L., Ouchrif, M., Panter, M., Pelletier,
G., Pita, S., Pohl, M., Puhlhofer, G., Punch, M.,
Raubenheimer, B. C., Raue, M., Raux, J., Rayner, S. M., Redondo,
I., Reimer, A., Reimer, O., Ripken, J., Rivoal, M.,
Rob, L., Rolland, L., Rowell, G., Sahakian, V., Sauge, L.,
Schlenker, S., Schlickeiser, R., Schuster, C., Schwanke, U.,
Siewert, M., Sol, H., Steenkamp, R., Stegmann, C., Tavernet,
J.-P., Theoret, C. G., Tluczykont, M., van der Walt,
D. J., Vasileiadis, G.and Vincent, P., Visser, B., Volk, H. J.,
and Wagner, S. J. High-Energy Particle Acceleration In The Shell
Of A Supernova Remnant. Nature 432 (2004), 75-77.
[3] Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kusrud, R. M. An Energy Principle For Hydromagnetic Stability Problems.
Proceedings of the Royal Society A 244 (1958), 17-40.
[4] Bhattacharyya, S. P., Chapellat, H., and Keel, L. H. Robust
Control: The Parametric Approach. Prentice Hall, 1995.
[5] Dewar, R. L. Interaction between HydromagneticWaves And A Time-
Dependent, Inhomogeneous Medium. Physics of Fluids 13 (1970), 2710-
2720.
[6] Dobbs, C. L., and Price, D. J. Magnetic Fields And The Dynamics
Of Spiral Galaxies. Monthly Notices of the Royal Astronomical Society
383 (2008), 497-512.
[7] Faber, T. E. Fluid Mechanics For Physicisits. Cambridge University
Press, 1997.
[8] Ferdinand, F. An Inhomogeneous Eigenvalue Problem. Journal of
Computational and Applied Mathmarics 167 (2004), 243-249.
[9] Franco, J., Kim, J., Alfaro, E. J., and Hong, S. S. The Parker
Instability In Three Dimensions: Corrugations And Superclouds Along
The Carina-Sagittarius Arm. The Astrophysical Journal 570 (2002),
647-655.
[10] Fukui, Y., Yamamoto, Y., Fujishita, M., Kudo, M., Torii,
K., Nozawa, S., Takahashi, K., Matsumoto, R., Machida, M.,
Kawamura, A., Yonekura, Y., Mizuno, N., Onishi, T., and
Mizuno, A. Molecular Loops In the Galactic Center: Evidence for
Magnetic Flotation. Science 314 (2006), 106.
[11] Gerard, L. G. S., and Diederik, R. BICGSTAB(L) For Linear
Equations Involving Unsymmetric Matrices With Complex. Electronic
Transactions on Numerical Analysis 1 (1993), 11-32.
[12] Hanasz, M., and Lesch, H. The Dynamical Coupling Of Cosmic
Rays And Magnetic Field In Galactic Disks. Astrophysics and Space
Science 281 (2002), 289-292.
[13] Heavens, A. F. Ecient Particle Acceleration In Shocks. Royal As-
tronomical Society, Monthly Notices 210 (1984), 813-827.
[14] Horbury, T., Forman, M., and Oughton, S. Spacecraft Observations
Of Solar Wind Turbulence: An Overview. Plasma Physics and
Controlled Fusion 47 (2005), B703-B717.
[15] Hughes, D. W., and Cattaneo, F. A New Look At The Instability
Of A Strati ed Horizontal Magnetic Field. Geophysical & Astrophysical
Fluid Dynamics 39 (1987), 65-81.
[16] Jiang, I. G., Chan, K. W., and Ko, C. M. Hydrodynamic Approach
To Cosmic Ray Propagation. I. Nonlinear Test Particle Picture.
Astronomy and Astrophysics 307 (1996), 903-914.
[17] Jones, F. C., and Ellison, D. C. The Plasma Physics Of Shock
Acceleration. Space Science Reviews 58 (1991), 259-346.
[18] Jones, T. W., and Kang, H. Time-Dependent Evolution Of Cosmic-
Ray-Mediated Shocks In The Two-Fluid Model. The Astrophysical Jour-
nal 363 (1990), 499-514.
[19] Jury, E. I. From J. J. Sylvester to Adolf Hurwitz: A History Review.
In Stability Theory Hurwitz Centenary Conference Centro Stefano Fran-
scini, Ascona (1995), R. Jeltsch and M. Mansour, Eds., pp. 53-65.
[20] Kim, W., Ostriker, E. C., and Stone, J. M. Three-Dimensional
Simulations Of Parker, Magneto-Jeans, and Swing Instabilities In Shearing
Galactic Gas Disks. The Astrophysical Journal, Volume 581, Issue
2, pp. 1080-1100 581 (2002), 1080-1100.
[21] Ko, C. M. A Note on The Hydrodynamical Description of Cosmic Ray
Propagation. Astronomy and Astrophysics 259 (1992), 377-381.
[22] Ko, C. M. Cosmic-Ray-Modi ed Shocks. Advances in Space Research
15 (1995), 149-158.
[23] Ko, C. M. Hydrodynamic Approach To Cosmic Ray Propagation. II.
Nonlinear Test Particle Picture In A Shocked Background. Astronomy
and Astrophysics 340 (1998), 605-616.
[24] Ko, C. M. Continuous So0lutions Of The Hydrodynamic Approach To
Cosmic-Ray Propagation. Journal of Plasma Physics 65 (2001), 305-
317.
[25] Ko, C. M., and Jeng, A. T. Magnetohydrodynamics Instability
Driven By Cosmic Rays. Journal of Plasma Physics 52 (1994), 23-42.
[26] Kulsrud, R. M., and Cesarsky. The E ectiveness of Instabilities
for The Con nement of High Energy Cosmic Rays in The Galactic Disk.
Astrophysical Letters 8 (1971), 189.
[27] Kulsrud, R. M., and Pearce, W. P. The E ect of Particle-wave
Interactions on The Propagation of Cosmic Rays. The Astrophysical
Journal 156 (1969), 445-469.
[28] Kuwabara, T., and Ko, C. M. Parker-jeans instability of gaseous
disks including the e ect of cosmic rays. The Astrophysical Journal 636
(2006), 290-302.
[29] Landau, L. D., and Lifshtiz, E. M. Fluid Mechanics. Pergamon
Press, 1987. Translated from the Russion by J. B. Sykes and W. H.
Reid.
[30] Lindqusit, S. On the Stability of Magneto-Hydrostatic Fields. Physics
Review 83 (1951), 307-311.
[31] Lo, Y. Y., and Ko, C. M. Stability of A System with Cosmic Rays
and Waves. Astronomy and Astrophysics, Volume 469 (2007), 829-837.
[32] Longair, M. S. High Energy Astrophysics, second ed., vol. 2. Cambridge
University Press, 1994.
[33] Malkov, M. A. Analytic Solution for Nonlinear Shock Acceleration
in the Bohm Limit. The Astrophysical Journal 485 (1997), 638-654.
[34] Malkov, M. A. Bifurcation, E ciency, and the Role of Injection in
Shock Acceleration with the Bohm Di usion. The Astrophysical Journal
491 (1997), 584-595.
[35] Marchuk, G. I. Method of Numerical Mathematics, vol. 2. Springer-
Verlag, New York,Heidelberg, Berlin, 1975.
[36] Matsumoto, T., Nakamura, F., and Hanawa, T. Gravitational
instability of magnetized lamentary clouds. 2: Rotation. In In ESA,
Fourth International Toki Conference on Plasma Physics and Controlled
Nuclear Fusion (1993), pp. 349-352.
[37] Morris, M. Galactic Prominences on the Rise. Science 314 (2006),
70-71.
[38] Ostrowski, M. Eciency of The Second-order Fermi Acceleration At
Parallel Shock Wave. Astronomy and Astrophysics 283 (1994), 344-348.
[39] Padmanabhan, T. Theoretical Astrophysics, vol. I: Astrophysical Processes.
Cambridge university Press, 2000
[40] Parker, E. N. The Dynamical State of the Interstellar Gas and Field.
Astrophysical Journal 145 (1966), 811-833.
[41] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and
Flanney, B. P. Numerical Rrcipes in C, second ed. Press Syndicate
of the University of Cambridge, 1006.
[42] Priest, E. N. Solar Magnetohydrodynamics. D. Reidel Publishing
Company, P.O. Box 17, 3300 AA Dordrecht, Holland, 1987.
[43] Robert, R., and Rosier, C. Long Range Predictability of Atmospheric
Flows. Nonlinear Processes in Geophysics 8 (2001), 55-67.
[44] S., L. M., and Hong, S. S. ans Kim, J. Three-Dimensional Simulations
of the Jens-Parker Instability. Journal of The Korean Astronomical
Society 34 (2001), 285-287.
[45] Shibata, K., Tajima, T., Matsumoto, R., Horiuchi, T.,
Hanawa, T., Rosner, R., and Uchida, Y. Nonlinear Parker Instability
of Isolated Magnetic Flux in A Plasma. The Astrophysical Journal
338 (1989), 471-492.
[46] Skilling, J. Cosmic Rays in The Galaxy: Convection or Di usion.
The Astrophysical Journal 170 (1971), 265-273.
[47] Skilling, J. Cosmic Ray Streaming. I - E ect of Alfven Waves on
Particles. Royal Astronomical Society, Monthly Notices 172 (1975), 557-
566.
[48] Skilling, J. Cosmic Ray Streaming. III - Self-consistent Solutions.
Royal Astronomical Society, Monthly Notices 173 (1975), 255-269.
[49] Tanuma, S., Yokoyama, T., Kudoh, T., and Shibata, K. Magnetic
Reconnection Triggered by the Parker Instability in the Galaxy:
Two-dimensional Numerical Magnetohydrodynamic Simulations and
Application to the Origin of X-Ray Gas in the Galactic Halo. The
Astrophysical Journal 582 (2003), 215-229.
[50] Webb, G. M., Zank, G. P., Kaghashvili, E. K., and
Ratkiewicz, R. E. Magnetohydrodynamics waves in non-uniform
ows I: A Variational Approach. J. Plasma Physics 71 (2005), 785-
809.
[51] Yan, H., and Lazarian, A. Cosmic-Ray Scattering and Streaming
In Compressible Magnetohydrodynamic Turbulence. The Astrophysical
Journal 614 (2004), 757-769.
[52] Yang, L., and Xia, B. An Explicit Criterion to Determine The Number
Of Roots In An Interval Of A Polynominal. Progress In Nature
Science 10, 12 (2000), 897-910.
|