博碩士論文 88322086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.145.75.49
姓名 施政廷(Zheng-Ting Sh )  查詢紙本館藏   畢業系所 土木工程研究所
論文名稱 普羅比機率型動態用路人均衡模型演算法求解效率之比較
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 明確型動態用路人均衡模型係假設用路人具有完整資訊,然而實際上用路人並不一定具有完整資訊,而機率型動態用路人均衡模型以機率分配的形式來處理用路人路徑選擇問題,使得模型更趨向一般化。
機率型動態用路人均衡模型依據機率分配的不同而分為羅吉特模型及普羅比模型。羅吉特模型因為假設方案之間具有獨立且不相關(IIA)的特性,而具有效求解的優點,但卻無法考慮用路人選擇方案間的相關性,而普羅比機率型動態用路人均衡模型,雖然缺乏求解效率,但可以有效解決羅吉特模型的爭議
由於普羅機率型動態用路人均衡模型中,必須考慮時空間的相關性,本研究接續馮君惠(1998)的研究,更加深入探討普羅比機率型動態用路人均衡模型,並試圖將不同的求解演算法應用至動態路徑選擇中,並以不同的測試例比較各演算法的求解效率,提供日後相關應用的參考建議。
摘要(英) The basic assumption with Wardrop’s principles is that the traffic information is perfect. However, this assumption is generally not correct because the traffic information is likely to be imperfect. It is realistic that stochastic dynamic user equilibrium model hypothesizes that the error term of an actual route travel time is randomly distributed.
We assume the distribution is the Gumbel distribution which yield the logit model or Normal distribution which yield the probit model. The logit model hypothesizes the independent and irrelative between alternative and can solve the problem effectively. The probit model is realistic but it solve the problem ineffectively.
We must consider the relation between time and space in stochastic dynamic user equilibrium model with probit model and develop different algorithms to solve the probit model. Finally, we suggest several indices to evaluste these algorithms and make conclusions to provide a reference for further improvement.
關鍵字(中) ★ 普羅比
★  機率型
★  機率型動態用路人均衡模型
★  變分不等式
關鍵字(英) ★ Dynamic User-Equilibrium
★  probit
★  Stochastic
論文目次 中文摘要……………………………………………………………I
英文摘要...II
目錄………………………………………………………………..III
圖目錄……………………………………………………………..VI
表目錄…..VIII
第一章 緒論1
1.1 研究背景與動機1
1.2 研究目的2
1.3 研究假設3
1.4 研究範圍與內容3
1.5 研究流程5
第二章 文獻回顧6
2.1 動態旅運選擇模型6
2.2 機率型動態用路人均衡模型9
2.3 小結10
第三章 常態機率分配的動態用路人均衡模型11
3.1 路段觀點機率型動態用路人均衡模型11
3.2 巢化對角法13
3.3 時空相關性16
3.4 路段基礎式蒙地卡羅模擬法19
3.4.1 抽樣方法19
3.4.1.1 數值分析19
3.4.1.2 抽樣檢定20
3.4.2寇列斯基法22
3.4.3路段基礎式蒙地卡羅模擬法24
3.4.4數值分析26
3.4.4.1 輸入資料26
3.4.4.2 測試結果27
3.4.4.4 正確性說明28
3.4.5 小結31
3.5 路徑觀點機率型動態用路人均衡模型33
3.6 路徑基礎式蒙地卡羅模擬法33
3.6.1 路徑觀點之共變異矩陣33
3.6.2 路徑基礎式蒙地卡羅模擬法35
3.6.3 數值分析39
3.6.4 正確性說明40
第四章 路徑基礎式與路段基礎式蒙地卡羅模擬法之比較46
4.1路段基礎式-蒙地卡羅模擬法分析46
4.1.1時間分析48
4.1.2 迴圈二精度與執行時間分析50
4.2路徑基礎式-蒙地卡羅模擬法分析52
4.2.1時間分析53
4.2.2 迴圈二精度與執行時間分析55
4.3路徑基礎式與路段基礎式模擬法比較57
4.3.1感知旅行時間分析57
4.3.2正確性分析比較62
4.3.3 績效分析64
4.3.4 精度與執行時間比較分析65
4.4小結67
第五章 結論與建議68
5.1 結論68
5.2 建議70
參考文獻 72
附錄A 主要符號對照表75
附錄B 寇列斯基法77
附錄C 實例分析………………………………………………..79
參考文獻 1.杜明臨,「機率型動態路徑選擇模型之研究」,國立中央大學土木工程學研究所碩士論文,民國85年。

2.薛哲夫,「明確型動態旅運選擇模型之研究」,國立中央大學土木工程學研究所碩士論文,民國85年。

3.張家偉,「路徑變數產生法求解動態交通量指派模型之效率比較」,國立中央大學土木工程研究所碩士論文,民國86年。
4.馮君惠,「動態機率型用路人最佳化模型之求解演算法效率比較」,國立中央大學土木工程研究所碩士論文,民國87年。

5.Boyce, D.E., Ran, B. and LeBlanc, L.J., 1995. Solving Instantaneous Dynamic User-Optimal Traffic Assignment Model. Transportation Science, 29, 128-142.
6.Carey, M., 1986. A Constraint Qualification for a Dynamic Traffic Assignment Model. Transportation Science, 20, 55-58.
7.Carey, M., 1987. Optimal Time-Varying Flows on Congested Networks. Operations Research, 35, 58-69.
8.Casscetta, E., 1991, A Day-to-Day and Within-Day Dynamic Stochastic Traffic Assignment Model. Transportation Research, 25A, 277-291.
9.Chen, H.K. and Hsueh, C.F., 1996. A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation. Paper Presented at the 5th World Congress of the RSAI, Tokyo, May 2-6.
10.Chen, H.K. and Tu, M.L., 1996. A Note on Link Travel Time Functions under Dynamic Loads by Daganzo. Paper Presented at the 5th World Congress of the RSAI Conference, Tokyo, Japan.
11.Chen, H.K. and Hsueh, C.F., 1997a. Combining Signal Timing Plan and Dynamic Traffic Assignment. Presented at the 76th Annual Meeting of the Transportation Research Board, Washington DC.
12.Chen, H.K. and Hsueh, C.F., 1997b. A Model and an Algorithm for the Dynamic User-Optimal Route Choice Problem. Transportation Research, 32B(3), 219-234.
13.Chen, H.K. and Hsueh, C.F., 1998.03. A Discrete-Time Dynamic User-Optimal Departure Time/Route Choice Problem Route Choice Model. Transportation Engineering, ASCE, 124(3), 246-254.
14.Damberg, O., Lundgren, J.T. and Patriksson, M., 1996. An Algorithm for the Stochastic User Equilibrium Problem. Transportation Research, 30B(2), 115-131.
15.Friesz, T.L., Luque, F.J., Tobin, R.L. and Wie, B.W., 1989. Dynamic Network Traffic Assignment as a Continuous Time Optimal Control Problem. Operations Research, 37, 893-901.
16.Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L. and Wie, B.W., 1993. A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem. Operations Research, 41, 179-191.
17.Janson, B.N., 1991. Dynamic Traffic Assignment for Urban Road Networks. Transportation Research, 25B, 143-161.
18.Jayakrishnan, R., Tsai, W.K., Prashker, Joseph, N. and Rajadhyaksha, S., 1994. A Faster Path-Based Algorithm for Traffic Assignment. Presented at the 73th Annual Meeting of the Transportation Research Board, Jan 9-13.
19.Katoh, K., Ibaraki, T. and Mine, H., 1982. An Efficient Algorithm for K Shortest Paths. Networks, 12, 411-427.
20.Luque, F.J. and Friesz, T.L., 1980. Dynamic Traffic Assignment Considered as a Continuous Time Optimal Control Problem. Presented at the TIMS/ORSA Joint National Meeting, Washington DC.
21.Matsui, H., 1987. A Model of Dynamic Traffic Assignment. Text of Infrastructure Planning Lectures, JSCE, 18, 84-96.
22.Merchant, D.K. and Nemhauser, G.L., 1978a. A Model and an Algorithm for the Dynamic Traffic Assignment Problems. Transportation Science, 12, 183-199.
23.Merchant, D.K. and Nemhauser, G.L., 1978b. Optimality Conditions for a Dynamic Traffic Assignment Model. Transportation Science, 12, 200-207.
24.Perko, A., 1986. Implementation of Algorithms for K Shortest Loopless Paths. Networks, 16, 149-160.
25.Patriksson, M., 1994. The Traffic Assignment Problem - Models and Methods, VSP BV, The Netherlands.
26.Ran, B. and Boyce, D.E., 1994. Dynamic Urban Transportation Network Models: Theory and Implications for Intelligent Vehicle Highway Systems. Lecture Notes in Economics and Mathematical Systems 417, Springer-Verlag, New York.
27.Ran, B. and Boyce, D.E., 1996. A Link-Based Variational Inequality of Ideal Dynamic User-Route Optimal Choice Problem. Transportation Research, 30B(1), 47-51.
28.Ran, B., Hall, R.W. and Boyce, D.E., 1996. A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice. Transportation Research, 30B(1), 31-46.
29.Ran, B. and Shimazaki, T., 1989a. A General Model and Algorithm for the Dynamic Traffic Assignment Problem. Proceedings of the Fifth World Conference Transport Research, Yokohama, Japan.
30.Ran, B. and Shimazaki, T., 1989b. Dynamic User Equilibrium Traffic Assignment for Congested Transportation Networks. Presented at the Fifth World Conference on Transport Research, Yokohama, Japan.
31.Sheffi, Y., 1985. Urban Transportation Networks : Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, NJ.
32.Smith, M.J., 1993. A New Dynamic Traffic Model and the Existence and Calculation of Dynamic User Equilibria on Congested Capacity-Constrained Road Networks. Transportation Research, 27B, 49-63.
33.Tobin, R.L. and Friesz, T.L., 1988. Sensitivity Analysis for Equilibrium Network Flow. Transportation Science, 22(4), 242-250.
34.Vythoulkas, P. C., 1990. Two Models for Predicting Dynamic Stochastic Equilibrium in Urban Transportation Networks. Proceedings of 11th International Symposium on Transportation and Traffic Theory, Elsevier Science, Amsterdam, 253-272.
35.Wie, B.W., 1989. Dynamic System Optimal Traffic Assignment on the Congested Multidestination Networks. Presented at the Fifth World Conference on Transport Research, Yokohama, Japan.
36.Wie, B.W., Friesz, T.L. and Tobin, R.L., 1990. Dynamic User Optimal Traffic Assignment on Congested Multidestination Networks. Transportation Research, 24B, 443-451.
37.Yen, J. Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, 17, 712-716.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2001-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明