博碩士論文 963303026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:3.145.39.52
姓名 張孜聖(Tzu-Sheng Chang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 金屬多孔材應用於質子交換膜燃料電池內流道的研究
(Study on the Use of Metal Foam as the Flow Field of PEM fuel cells)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究★ PEMFC電極及觸媒層之電熱流傳輸現象探討
★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響★ 高溫衝擊流熱傳特性之研究
★ 輻射傳遞對磁流體自然對流影響之研究★ 小型燃料電池流道設計與性能分析
★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象★ 氣體擴散層與微孔層對於燃料電池之影響與分析
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
★ 超音速高溫衝擊流之暫態分析★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是運用不同微觀特性之金屬多孔材(metal foam)為質子交換膜燃料電池之流場,搭配金屬雙極板組成單電池,探討在不同電池操作條件(溫度、加溼度等)下,金屬多孔材之孔徑大小與面密度高低對燃料電池性能之影響。
論文中使用金屬雙極板是由於導電性佳、機械強度高、加工方便、容易大量生產,已被視為替代性雙極板材質。一般常見雙極板上因刻劃有流道,隨複雜程度而加工耗時,因此,本研究利用凹槽設計並搭配使用金屬多孔材取代傳統內流道,利用金屬多孔材的導電性佳與氣體滲透性高的特性,進而達成提升電池性能的目標。
研究觀察到孔徑大小與面密度高低是影響金屬多孔材質子交換膜燃料電池性能表現的因子。孔徑大的金屬多孔材,氣體滲透性佳,可以讓氣體擴散性加快,增加與電極上的白金觸媒反應的機會。而面密度高的金屬多孔材則可以降低電池內阻抗的歐姆極化,提升電池性能。由實驗結果可知,金屬多孔材浸泡適當比例的疏水劑後,經過一段時間的烘烤燒結,並配合適當壓力、電池溫度與加濕溫度的操作下,可以讓本研究中的單電池金屬多孔材燃料電池在操作電壓為0.6 V時,產生的電流密度高於2 A/cm2的性能。藉此研究的結果,提供未來金屬多孔材質子交換膜燃料電池的電池堆性能提昇之研發方向。
摘要(英) The purpose of this study is to use different micro characters of metal foam as the flow field of PEMFC in metal bipolar plates. The experiments are to explorer the performance of PEMFC in various pore size and area density of metal foam at different (temperature, moisture etc.) test conditions.
Metal bipolar plates own good conductivity, high mechanical strength, easy machinery, easy mass production and it has been regarded as the alternative material in bipolar plates. It takes much time to manufacture flow channels in bipolar plates. Therefore, the fillister design with porous metal is used. Besides, take advantage of porous metal that has good performace in conductivity and permeability to supersede traditional flow channels design to achieve the enhancement of fuel cell.
In this study, observed the pore size and area density are significant and firmly believed in metal foam PEM fuel cell.The larger pore size of metal foam could affect the gas permeability. In addition, it also provide reactant gases to have better diffusionsive ability and increase the opportunities to get in touch with the Pt catalyst on electrode. As for the area density, we found it can reduce the internal resistance of fuel cell which may increase the performance. From the experiments,the metal foam needs to be immersed in adequated hydrophobic liquid and baked within a period of time.Then use optimum operational conditions (pressure, moisture temperature, cell temp). The results tell us when voltage at 0.6V, the current density is greater than 2 A/cm2 for per single cell.We wish this experimental results and information could be used for development of porous flow channel PEMFC stacks in future.
關鍵字(中) ★ 金屬多孔材質子交換膜燃料電池
★ 導電性
★ 氣體流動擴散性
關鍵字(英) ★ Metal foam PEM fuel cell
★ Conductivity
★ Permeability
論文目次 目錄
中文摘要………………………………………………………………………i
英文摘要……………………………………………………………………ii
誌謝……………………………………………………………………………iii
目錄………………………………………………………………………iv
表目錄………………………………………………………………………vi
圖目錄……………………………………………………………………vii
符號說明……………………………………………………………………x
第一章 緒言…………………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 燃料電池發展歷史…………………………………………………2
1-3 燃料電池的種類簡介…………………………………………………3
1-3-1 液態電解質燃料電池……………………………………………3
1-3-2 固態電解質燃料電池……………………………………………6
1-4 燃料電池的極化現象…………………………………………………8
1-5 文獻回顧………………………………………………………………10
1-6 研究動機與目的………………………………………………………15
第二章 質子交換膜燃料電池的構造………………………………………16
2-1 膜電極組………………………………………………………………16
2-2 雙極板與流道…………………………………………………………18
第三章 金屬多孔材簡介………………………………………………………22
3-1 金屬多孔材的製造方法簡介………………………………………23
3-2 實驗流程金屬多孔材的物理性質…………………………………24
第四章 實驗方法與實驗設備………………………………………………27
4-1 實驗流程………………………………………………………………27
4-2 燃料電池材料與規格………………………………………………27
4-3 影像式接觸角量測儀………………………………………………29
4-4 簡易型介面阻抗量測儀……………………………………………29
4-5 燃料電池測試台……………………………………………………29
第五章 實驗結果與討論………………………………………………………33
5-1 電池溫度對電池性能的影響…………………………………………33
5-2 加濕溫度對電池性能的影響…………………………………………35
5-3 操作壓力對電池性能的影響…………………………………………37
第六章 結論與建議……………………………………………………………40
6-1 結論………………………………………………………………40
6-2 未來可進行之工作………………………………………………41
參考文獻………………………………………………………………………42
參考文獻 參考文獻
[1] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John
Wiley & Sons, LTD., 2001.
[2] 衣寳廉,黃朝榮,林修正,燃料電池-原理與應用,台灣五南圖書出版公司,民國九十四年。
[3] 林昇佃,余子隆,張幼珍等編著,燃料電池:新世紀能源,滄海書局,
民國九十三年。
[4] 黃鎮江,燃料電池,全華科技股份有限公司,民國九十四年。
[5] Q. Zhigang, K. Arthur, “Activation of low temperature PEM fuel
cells”, Journal of Power Sources, Vol. 111 (2002), pp.181–184.
[6] H.I. Lee, C.H. Lee, T.Y. Oh, S.G. Choi, I.W. Park, K.K. Baek,
“Development of 1 kW class polymer electrolyte membrane fuel
cell power generation system”, Journal of Power Sources,
Vol. 107 (2002), pp.110–119.
[7] K.H. Choi, D.H. Peck, S.K. Chang, D.R. Shin, “Water transport in
polymer membranes for PEMFC”, Journal of Power Sources,
Vol. 86 (2000), pp.197–201.
[8] K. Tuber, D. Pocza, C. Hebling, “Visualization of water buildup in
the cathode of a transparent PEM fuel cell”, Journal of Power
Sources, Vol. 124 (2003), pp.403–414.
[9] E. Hontanon, M.J. Escudero, C. Bautista, P.L. Garcia–Ybarra,
L. Daza, “Optimisation of flow-field in polymer electrolyte
membrane fuel cells using computational fluid dynamics
techniques”, Journal of Power Sources, Vol. 86 (2000),
pp.363–368.
[10] S. Arisetty, A.K. Prasad, S.G. Advani, “Metal foams as flow field and
gas diffusion layer in direct methanol fuel cells”, Journal of
Power Sources, Vol. 165 (2007), pp.49–57.
[11] R. Jiang, C. Rong, D. Chu, “Determination of energy efficiency
for a direct methanol fuel cell stack by a fuel circulation method”, Journal of Power Sources, Vol. 126 (2004), pp.119–124.
[12] A. Kumar, R.G. Reddy, “Modeling of polymer electrolyte
membrane fuel cell with metal foam in the flow-field of the biplar/end plates”, Journal of Power Sources, Vol. 114 (2003), pp.54–62.
[13] A. Kumar, R.G. Reddy, “Materials and design development for
bipolar/end plates in fuel cell”, Journal of Power Sources,
Vol. 129 (2004), pp.62–67.
[14] W.R. Chang, J.J. Hwang, F.B. Weng, S.H. Chan, “Effect of
clamping pressure on the performance of a PEM fuel cell”, Journal of Power Sources, Vol. 166 (2007), pp.149–154.
[15] C. Lim, C.Y. Wang, “Effects of hydrophobic polymer content in
GDL on power performance of a PEM fuel cell”, Journal of Electrochimica Acta, Vol. 49 (2004), pp.4149–4156.
[16] J. Tan, Y.J. Chao, M. Yang, X.D. Li, J.W. Van– Zee, “Degradation of silicone rubber under compression in a simulated PEM fuel cell environment”, Journal of Power Sources, Vol. 172 (2007), pp.782–789.
[17] S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, “Performance of the
gold-plated titanium bipolar plates for the light weight PEM fuel cells”, Journal of Power Sources, Vol. 162 (2006), pp.486–491.
[18] J. Wind, R. Spah, W. Kaiser, G. Bohm, “Metallic bipolar plates
for PEM fuel cells”, Journal of Power Sources, Vol. 105 (2002), pp.256–260.
[19] Y. Fu, M. Hou, H.F. Xu, Z.G. Hou, P.W. Ming, Z. Shao, B.L. Yi,
“Ag–polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell ”, Journal of Power Sources, Vol. 182 (2008), pp.580–584.
[20] M.V. Williams, E. Begg, L. Bonville, H. Russell–Kunz,
“Characterization of Gas Diffusion Layers for PEMF ”, Journal
of The Electrochemical Society, Vol. 151 (8), A1173–A1180
(2004).
[21] H. Tawfik, Y. Hunga, D. Mahajan, “Metal bipolar plates for
PEM fuel cell—A review”, Journal of Power Sources,
Vol. 163 (2007), pp.755–767.
[22] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de–Waal,
“Bipolar plates for PEM fuel cells”, Journal of Power Sources,
Vol. 118 (2003), pp.44–46.
[23] B. Sosnik, “Process for making foamlike mass of metal”, US
Patent 2434775, 1948.
[24] J. Banhart, “Manufacture, characterisation and application of
cellular metals and metal foams”, Progress in Materials
Science, Vol. 46 (2001), pp.559–632.
[25] A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, “Thermophysical
properties of high porosity metal foams”, International Journal
of Heat and Mass Transfer, Vol. 45 (2002), pp.1017–1031.
[26] V. Paserin, S. Marcuson, J. Shu, D.S. Wilkinson, “ CVD
technique for Inco nickel foam production”, Advanced
engineering materials, No. 6 (2004), pp.454–459.
[27] Q. Dong, M.M. Mench, S. Cleghorn, U. Beuscherb, “Distributed
performance of polymer electrolyte fuel cells under low–
humidity conditions ”, Journal of The Electrochemical Society, 152 (11), pp.A2114-A2122(2005).
[28] P. Khayargoli, V.Loya, L.P. Lefebvre, M. Medrj, “The impact of
micro-structure on the permeability of metal foam”, CSME (2004)
Forum, pp.220–228.
[29] M. Amirinejad, S. Rowshanzamir, M.H. Eikani, “Effects of
operating parameters on performance of a proton impact of
micro-structure exchange membrane fuel cell”, Journal of
Power Sources, Vol. 161 (2006), pp.872–875.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2010-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明