

所別:通訊工程學系碩士班 甲(通訊系統及訊號處理)組(一般生) 科目:通訊系統 共 2 頁 第 / 頁本科考試禁用計算器 *請在試卷答案卷(卡)內作答

1. In a quadrature modulator system as shown below with the DAC outputs $s_{I,\delta}(t) = \sum_{m=-\infty}^{\infty} s_I[m] \cdot \delta(t-m \cdot T_S)$, $s_{Q,\delta}(t) = \sum_{m=-\infty}^{\infty} s_Q[m] \cdot \delta(t-m \cdot T_S)$ and the LPF impulse response $h_{LP}(t)$, (a) find **the condition of** $h_{LP}(m \cdot T_S)$, $m \in \text{integer}$ such that $s_I(m \cdot T_S) = \{s_{I,\delta}(t) * h_{LP}(t)\}|_{t=mT_S} = s_I[m-10]$ (4%); (b) find **the Fourier transform of** $s_{I,\delta}(t) = \sum_{m=-\infty}^{\infty} s_I[m] \cdot \delta(t-m \cdot T_S)$ when $s_I[m] = 2 \cdot \cos(0.1 \cdot \pi \cdot m)$ (5%); (c) find **the formula** of $s_I[m]$ and $s_Q[m]$ such that $s_Q[m] = 2 \cdot \cos(2\pi \cdot (f_c + 0.1 \cdot f_S) \cdot t + \theta_c)$ when $s_I[m] = 3 \cdot (f_C(t)) = 3 \cdot (f_C(t$

DAC: digital-to-analog converter LPF: Lowpass Filter

2. In a quadrature demodulator system as shown below with the LPF having a frequency response $H_{LP}(f) = \Im\{h_{LP}(t)\} = \begin{cases} 2, & |f| < 0.5 \cdot f_S \\ 0, & \text{otherwise} \end{cases}$, (a) find $E\{|r_t(t)|^2\}$ when $E\{r_c(t) \cdot r_c(t+\tau)\} = \frac{N_0}{2} \cdot \delta(\tau)$ (4%); (b) find $E\{r_t[m] \cdot r_t[m+n]\}$ and $E\{r_t[m] \cdot r_0[m+n]\}$ when $E\{r_c(t) \cdot r_c(t+\tau)\} = \frac{N_0}{2} \cdot \delta(\tau)$ (6%); (c) find **the formula** of $r_t[m]$ and $r_t[m]$ when $r_c(t) = 2 \cdot \cos(2\pi \cdot (f_c + 0.1 \cdot f_S) \cdot t + \theta_c)$ (6%).

3. Consider a complex baseband communication system having the received signal given by $r_B(t) = \sum_{k=-\infty}^{\infty} a[k] \cdot p_{srrc}(t - k \cdot T_{sym} - \tau_0) + n_B(t)$ where $p_{rc}(t) = p_{srrc}(t) * p_{srrc}(-t)$ being a

注:背面有試題

所別:通訊工程學系碩士班 甲(通訊系統及訊號處理)組(一般生) 科目:通訊系統 共 2 頁 第 2 頁 本科考試禁用計算器 *請在試卷答案卷(卡)內作答

raised-cosine pulse with a roll-off factor 0.5 and $p_{re}(m \cdot T_{sym}) = \begin{cases} 2, & m=0 \\ 0, & m \neq 0 \end{cases}$, and $n_B(t) = n_I(t) + j \cdot n_Q(t)$ being the complex Gaussian noise with $E\{n_I(t) \cdot n_Q(t+\tau)\} = 0$ and $E\{n_I(t) \cdot n_I(t+\tau)\} = E\{n_Q(t) \cdot n_Q(t+\tau)\} = \frac{N_0}{2} \cdot S(\tau)$, (a) find the bandwidth and the power $(E\{|r_B(t)|^2\})$ of the received signal excluding noise when $a[k] \in \{-3, -1, 1, 3\}$ with equiprobability (10%); (b) find the sampling time t_k of the matched filter output, the value of A and $E\{|n_M[k]|^2\}$ such that $r_M(t) = r_B(t) * p_{sym}(T-t)$ with $r_M(t_k) = A \cdot a[k] + n_M[k]$ (12%); (c) find the decision rule based on $r_M(t_k)$ given in (b) and the decision error probability in terms of Q function such that the decision error probability is minimized when $a[k] \in \{-3, -1, 1, 3\}$ (10%); (d) repeat (c) when $a[k] \in \{1, j, -1, j\}$ (8%). (Q function: $Q(u) = \int_u^\infty \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right) \cdot dx$)

- 4. Consider the observations given by $Z_1 = 2 \cdot A + N_1$ and $Z_2 = 4 \cdot A + N_2$ where N_1 and N_2 are independent Gaussian noise with zero mean and variance σ_n^2 , (a) find the maximum-likelihood estimate of A based on Z_1 , i.e., $\hat{A}_{ML} = \arg\max_a f_{Z_1|A}(Z_1|a)$, and $E\left[\left(\hat{A}_{ML} A\right)^2\right]$ (4%); (b) find the maximum-likelihood estimate of A based on Z_1 & Z_2 , i.e., $\hat{A}_{ML} = \arg\max_a f_{Z_1,Z_2|A}(Z_1,Z_2|a)$ and $E\left[\left(\hat{A}_{ML} A\right)^2\right]$ (6%).
- 5. Consider a binary symmetrical channel with the transition probabilities $\Pr(y_k = (1-x_k)|x_k) = 1 \Pr(y_k = x_k|x_k) = p_0$ and $x_k \in \{0,1\}$, (a) find the code rate and decoding error probability when a (n=7,k=4) Hamming code is used prior to transmission through this channel (5%); (b) repeat (a) when the channel coding rule is given by $d_m = 0 \Rightarrow \{x_{3m}, x_{3m+1}, x_{3m+2}\} = \{1,0,1\}$ and $d_m = 1 \Rightarrow \{x_{3m}, x_{3m+1}, x_{3m+2}\} = \{0,1,0\}$ (d_m : the mth source data) (5%).
- 6. Explain the following terms: (a) source coding; (b) channel equalization; (c) bandwidth efficiency; (d) OFDM. (10%)

注:背面有試題