摘要(英) |
There are many international studying and evaluation about the abject.
Considering of safety, technology and economy, the method of deep geologic disposal is regarded as the most safety and stable way.
In this study, based upon the concept of the deep disposal method, thinking about the thermal, hydrological and mechanical properties of the paper in Sweden. In addition of considering the size of repository, initial condition and boundary condition of the internal paper.
The study directed at the influences of the saturation histories on the thermal conductivity of buffer material, to make the scoping analyses. In the results, the maximum temperature in the repository has obvious change due to the saturation histories.
In this study, using Taiwan Power Company report. Choosing its exploration data and disposal field size, using finite element method and 3D model to analysis. Thermal stress analysis adopt sequentially coupled thermal-stress analysis. Because Taiwan is located in the earthquake zone, the earthquake may create weak band in the top of disposal field. This research will focus on the effect of weak band’s size.
In this study, when the weak band’s size increases, the horizontal stress on the disposal site will increase. And when the weak band occurs, the water flow of the disposal site will increase.
|
參考文獻 |
[1] 方虹郡、吳禮浩,「低放射性廢棄物處置安全因素分析研究—瑞典經驗」,行政院原子能委員會核能研究所,2004。
[2] 劉尚志、林鴻旭、焦自強和張璞,「高放射性廢料終極處置-工程障壁之探討」,原子能委員會核能彙刊,第二十五卷第四期,42-51頁,1988。
[3] 邱太銘,「國外用過核燃料/高放射性廢料最終處置現況」,行政院原子能委員會核能研究所化工組,1999。
[4] 蔡昭明,「放射性廢料安全管制報告書」,放射性待處理物料管理處,1994。
[5] 吳禮浩,莊文壽,「KBS-3處置概念之緩衝與回填材料」,行政院原子能委員會核能研究所化學工程組,2004。
[6] 台灣電力公司,「全程工作規劃書(2000年版)」,台電公司,2000。
[7] 台灣電力公司,「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段成果報告」,2011。
[8] KBS, “Final Storage of Spent Nuclear Fuel – KBS-3,ⅠGeneral ; Ⅱ Geology ; Ⅲ: Barriers ; Ⅳ Safety”, Swedish Nuclear Fuel Supply Co/Division KBS, 1983.
[9] SKB, “Final disposal of spent nuclear fuel. Importance of the bedrock for safety”, SKB Technical Report 92-20, 1992.
[10] 蔡世欽,「深層地質處置概念熱效應與處置坑道配置之分析(期中報告初稿)」,我國用過核燃料長程處置潛在母岩特性調查於評估階段發展初步功能/安全評估模式(第一年計畫),2001。
[11] Thunvik, R. and Braester, C., “Heat propagation from a radioactive waste repository-Complementary calculations for the SKB 91 reference canister”, SKB Technical Report 91-61, 1991.
[12] 戴豪君,「深層岩體熱力—水力—力學耦合行為之初步研究」,國立成功大學,碩士論文,2002。
[13] 蘇依豪,「最終處置場緩衝材料地下水入侵模擬研究」,國立中央大學,碩士論文,2005。
[14] Selvadurai, A. and T. Nguyen, “Scoping analyses of the coupled thermal-hydrological-mechanical behavior of the rock mass around a nuclear fuel waste repository,” Engineering Geology, Vol.47, pp.379-400, 1996.
[15] 陳朝旭,「用過核廢料深層地下處置設計之研究」,國立中央大學,碩士論文,2002。
[16] Bear, J., Dynamics of fluids in porous media, American Elsevier Publishing Company, Dover, New York, 1972.
[17] 謝馨輝,「核廢料地下處置之熱傳導及初步熱應變分析」,國立中央大學,碩士論文,2003。
[18] SKB, “Deep Repository for Spent Nuclear Fuel: SR 97 Post-Closure Safety”, SKB Technical Report 99-06, 1999.
[19] JCN, “H12-Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan”, Japan Nuclear Cycle Development Institute, 2000.
[20] Lennart Börgesson, and Jan Hernelind, “Coupled thermal-hydro-Mechanical calculations of the water saturation phase of a KBS-3 deposition hole”, SKB Technical Report 99-41, 1999.
[21] 吳佩蓉,「核廢料最終處置場依序耦合熱—水—力學分析之溫度與飽和度歷程變化」,國立中央大學,所碩士論文,2009
[22] Börgesson, L., B. Faelth and J. Hernelind, “Water saturation phase of the buffer and backfill in the KBS-3V concept”, SKB Technical Report 06-14, 2006.
[23] 潘以文,「極深覆岩隧道周圍岩盤之溫度與熱應力場」,岩盤工程研討會,2000。
[24] 劉道穎,「緩衝材料於飽和狀態下熱-水力耦合作用試驗結果之數值驗證與分析」,國立中央大學,碩士論文,2008。
[25] 盧建宏,「台灣現地材料之弱帶對用過核燃料地下處置場熱應力與地下水影響分析」,國立中央大學,碩士論文,2013。
[26] 台灣電力公司,「我國用過核燃料長程處置潛在母岩特性調查與評估階段-發展初步功能/安全評估模式」,2003
[27] Hakami, E. and Olofsson, S., “Thermo-mechanical effects from a KBS-3 type repository. Performance of pillars between repository tunnels”, SKB Technical Report 00-05, 2000.
|