參考文獻 |
Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cement and Concrete Research 29(10) 1619-1625
Bakolas, A., Aggelakopoulou, E., Moropoulou, A., & Anagnostopoulou, S. (2006). Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. Journal of thermal analysis and calorimetry, 84(1), 157-163.
Bilim, C., Atiş, C. D., Tanyildizi, H., & Karahan, O. (2009). Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Advances in Engineering Software, 40(5), 334-340.
Bilim, C., Atiş, C. D. (2012). Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708-712.
Duran Atiş, C., Bilim, C., Çelik, Ö., & Karahan, O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and building materials, 23(1), 548-555.
Garg, M., & Pundir, A. (2014). Investigation of properties of fluorogypsum-slag composite binders–Hydration, strength and microstructure. Cement and Concrete Composites, 45, 227-233.
Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., & Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 38(7), 983-992.
Haha, M. B., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res. 41. 301–310.
Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74-83.
Hannesson, G., Kuder, K., Shogren, R., & Lehman, D. (2012). The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Construction and Building Materials, 30, 161-168.
Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214.
Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R. (2006). (Micro)-structural comparison between geopolymers alkali-slag cement and Portland cement, Journal of the European Ceramic Society, 26. 3789-3997.
Li, Y., & Sun, Y. (2000). Preliminary study on combined-alkali–slag paste materials. Cement and concrete research, 30(6), 963-966.
Midgley, H. G., Petifer, K. (1971). The misostructure of hydrated supersulphated cement, Cement and Concrete Research, 1. 101-104.
Moseson, A. J., Moseson, D. E., & Barsoum, M. W. (2012). High volume limestone alkali-activated cement developed by design of experiment. Cement and Concrete Composites, 34(3), 328-336.
Neto, A. A. M., Cincotto, M. A., & Repette, W. (2010). Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum. Cement and Concrete Composites, 32(4), 312-318.
Orsini, P.G., Buri , A., Marotta, A. (1975). Devitrification of glasses in the akermanite-gehlenite system, J. Am. Ceram. Soc. 58. 306–311.
Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: a cement for the future. Cement and concrete research, 29(8), 1323-1329.
Sajedi, F., Razak, H. A., Mahmud, H. B., & Shafigh, P. (2012). Relationships between compressive strength of cement–slag mortars under air and water curing regimes. Construction and Building Materials, 31, 188-196.
Sawyer, C.N., Mccarty, P.L., Parkin, G.F. (2003). Chemistry for environmental energineering and science, McGraw-Hill Companies, Inc. 5th. 674-675.
Sha, W., & Pereira, G. B. (2001). Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag. Cement and concrete research, 31(2), 327-329.
Sha, W. (2002). Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement, Proceedings of the International Conference on Advances in Building Technology, vols I, II. 881–888.
Shi, C., & Day, R. L. (1995). A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, 25(6), 1333-1346.
Shi, C., & Day, R. L. (1996). Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 26(3), 439-447.
Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26(12), 1789-1799.
Singh, M., & Garg, M. (2002). Calcium sulfate hemihydrate activated low heat sulfate resistant cement. Construction and Building Materials, 16(3), 181-186.
Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29(2), 159-170.
Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
Wang, S. D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033-1043.
Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25(3), 561-571.
Wei, Y., Yao, W., Xing, X., & Wu, M. (2012). Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27 Al MAS NMR, TG–DSC and selective dissolution techniques. Construction and Building Materials, 36, 925-932.
Yang, K. H., Cho, A. R., Song, J. K., & Nam, S. H. (2012). Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Construction and Building Materials, 29, 410-419.
台塑石化(股)公司, 副產品「混合石膏及副產石灰」再利用技術及應用推廣規範評估報告, 2006年8月
王昱智. CFB 副產石灰為混凝土膠結材料之配比與特性研究. 中央大學土木工程學系碩士學位論文, 2008, 1-139.
汪翊鐙. CFB副產石灰掺配爐石粉製作混凝土成效研究. 中央大學土木工程學系碩士學位論文, 2009.
林瑋倫.鹼激發爐石基膠體工程性質之研究. 國立台灣科技大學營建工程系碩士學位論文,2009.
李東旭、吳學權,「石膏種類對礦渣水泥性能的影響」,水泥工程學刊,第一期,1999, 16-18.
黃暉淇. 循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究. 國立台灣海洋大學材料工程研究所碩士學位論文, 2008.
|