博碩士論文 101322015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.226.251.72
姓名 賴昱儒(Yu-Ju Lai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 混凝土結構分析之三維等效單軸組成材料模型
(3D Concrete Material Model with Concept of Equivalent Uniaxial Strain)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證★ 以四面體離散化多面體系統之接觸分析與模擬
★ 軌道車輛三維動態脫軌係數之在線量測理論★ 向量式DKMT厚殼元推導與模擬
★ 向量式預力混凝土二維剛架元之數值模擬與驗證★ 向量式有限元應用於懸索橋非線性動力分析
★ 蛋形顆粒群之流固耦合分析★ 複合版梁元素分析模型之橋梁動態識別法
★ 三維等效單軸應變與應力之材料組成模型★ 人行吊橋的現有內力評估及動力分析
★ 薄殼結構非線性運動之向量式有限元分析法★ 雷射掃描技術於鋼軌磨耗之檢測
★ 動態加載下的等效單軸應變與 應力材料組成模型★ PISO三維流體動力學之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要為研究混凝土材料之非線性行為,透過前人所提出的等效單軸應變概念與混凝土材料亞塑性(hypoplastic)模型,將材料多軸行為轉化為多個單軸行為的方式,大幅簡化了混凝土塑性行為分析中複雜的數學計算。流動法則(flow rule)與硬化法則(hardening rule)等材料塑性行為分析中常用的理論,雖然在亞塑性材料模型中未出現,但其造成之影響亦直接表現於材料行為中,此種分析方式有別於傳統使用塑性力學來處理工程問題,並為研究混凝土開闢了一個新的方向。混凝土亞塑性材料模型主要分為兩個部分,分別為材料破壞曲面與等效單軸應力應變曲線,本論文研究了幾個發展至今較泛用的混凝土破壞模型,包括了Ottosen四參數模型、Hsieh-Ting-Chen四參數模型與Willam-Warnke五參數模型,最後選用由Menetrey 與Willam修正Willam-Warnke模型得到的Menetrey -Willam模型,同時,為了考慮材料之三維壓力強度極限,加入帽蓋(cap model)修正,提出封閉Menetrey -Willam模型(CMW model, Closed Menetrey &Willam Model);單軸應力應變曲線部分則使用Saenz提出的單軸應力應變曲線公式,此公式以單一式子表示曲線中的上升段(硬化)與下降段(軟化),在數值模擬的使用上非常方便。本文之數值算例,分別驗證了混凝土之單軸、雙軸與三軸之實驗行為。透過本研究的完成,可與有限元素法或向量式分析力學結合,預測混凝土結構之非線性動力行為。
摘要(英) Inelastic material model of concrete is a general used model for describing the behavior over the linear range. Based on concept of equivalent uniaxial strain proposed by Darwin and Pecknold, triaxial response can be de-coupled into three uniaxial relations. As this concept is used, calculation with plastic method including hardening rule and flow rule can be avoided. The effect of plastic behavior still be considered and appear in the stress-strain curve. On determination of current material strength, ultimate strength surface is used to complete the whole system with equivalent uniaxial strain. With combination of equivalent uniaxial strain and ultimate strength surface, “hypoplastic” is named to describe this systematized method. In this research, some failure surfaces is considered as the ultimate surface including Ottosen 4-parameter model, Hsieh-Ting-Chen 4-parameter model and Willam-Warnke 5-parameter model. Finally, Menetrey-Willam model which modified by Willam-Warnke 5-parameter model is used as ultimate strength surface in this research. Furthermore, the cap model is applied to describe the triaxial compressive ultimate strength and closed the ultimate strength surface. Combining Menetrey-Willam model and cap model together as a closed surface and named Closed Menetrey Willam model to attain the completeness and Closure of geometry. The equation of uniaxial envelope, proposed by Saenz, is convenient to use with only one equation describes ascending and descending branches. In case study, uniaxial, biaxial and triaxial experiments are applied to verify the analysis. By combining the hypoplastic model and finite element method, prediction of dynamic problems of nonlinear concrete structure are expected to be well.
關鍵字(中) ★ 混凝土結構
★ 塑性力學之亞塑性材料模型
★ 等效單軸應變
★ 破壞曲面
★ 非線性分析
關鍵字(英) ★ Concrete structure
★ hypoplastic
★ equivalent uniaxial strain
★ ultimate surface
★ nonlinear analysis
論文目次 Abstract I
摘要 II
致謝 III
目錄 IV
圖表目錄 VI
第1章 前言 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法與內容 3
第2章 混凝土材料破壞模型 7
2.1 Haigh-Westergaard與主應力空間座標 12
2.2 Ottosen 4-Parameter Model 16
2.3 Hsieh-Ting-Chen 4-Parameter Model 17
2.4 Willam-Warnke 5-Parameter Model 19
第3章 混凝土材料之等效三軸模型 22
3.1 三維混凝土材料本構關係 23
3.2 等效單軸應變概念 26
3.3 單軸包絡曲線(Uniaxial Envelope) 28
3.4 應力空間與等效單軸應變空間之Closed Menetrey Willam破壞曲面 30
3.4.1 橢圓函數(Elliptical Function) 33
3.4.2 子午線(Meridians) 35
3.4.3 廣義帽蓋模型(Generalized Cap Model) 36
3.4.4 等效單軸應變空間之破壞曲面 40
3.5 極限強度曲面修正-實驗曲線建立極限強度面 40
3.5.1 應力空間與等效單軸應變空間降伏曲面相同 40
3.5.2 應力空間與等效單軸應變空間降伏曲面不同 44
3.6 計算流程 48
第4章 數值算例與驗證 52
4.1 混凝土單軸及雙軸載重實驗結果驗證 52
4.2 混凝土三軸載重實驗結果驗證 59
第5章 結論與建議 64
5.1 結論 64
5.2 未來建議與展望 65
參考文獻 66
附錄A 橢圓函數之推導 68
附錄B 應力三向對稱完整性 73
附錄C 三軸圍束壓力實驗之整理 75
附錄D 旋轉矩陣(Transformation matrix) 77
參考文獻 [1] Darwin, D., and Pecknold, D.A., “Nonlinear Biaxial Stress-Strain Law for Concrete,” ASCE, 1977;103(2):229-241.
[2] Balan, T.A., Spacone, E. and Kwon, M., “A 3D Hypoplastic Model for Cyclic Analysis of Concrete Structures,” Engineering Structures, 2001; 23:333-342.
[3] Chen, W.F., “Plasticity for Structural Engineers”
[4] Menétrey, P.H., and Willam, K.J., ”Triaxial Failure Criterion for Concrete and Its Generalization,” ACI Structural Journal, 1995;92:311-8.
[5] Willam, K,J and Warnke, E.P., “Constitutive Model for the Triaxial Behaviour of Con-crete,” Concrete Structures Subjected to Triaxial Stresses, International Association for Bridges and Structural Engineering, Bergamo, Italy, May 1974
[6] Klisinski, M., ”Degradation and Plastic Deformation of Concrete,” IFTR Report 38, PhD thesis, Polish Academy of Science, 1985.
[7] Kolymbas, D. ”An outline of hypoplasticity” Arch Appl Mech 1991:6;143-51.
[8] Mordini, A., “Three Dimension Numerical Modeling of RC Behaviour,” PhD thesis, University of Parma, Italy, 2006.
[9] Li, T., and Crouch, R., “A C2 Plasticity Model for Structural Concrete,” Computers and Structures, 2010;88:1322-1332.
[10] Pisano, A.A., Fuschi, P., and De Domenico, D., “A Kinematic Approach for Peak Load Evaluation of Concrete Elements,” Computers and Structures, 2013; 119:125-139.
[11] 張鈴菀, “向量式有限元分析法於鋼筋混凝土結構非線性行為之應用,” 臺灣國立中央大學碩士論文, 2009.
[12] Ottosen, N.S., “Constitutive Model for Short-Time Loading of Concrete,” Journal of the Engineering Mechanics Division, 1979;105(1):127-141
[13] Bazant, Z.P., and Kim S.S., “Plastic-Fracturing Theory for Concrete,” Journal of the Engineering Mechanics Division, 1979;105(3):407-428.
[14] Lekhnitskii, S.G., In: Brandstatter, J.J., editor, 1963, ”Theory of Elasticity of an Aniso-tropic elastic body,” San Francisco, CA: Holden Day,
[15] Elwi, A.A., and Murray, D.W., “A 3D Hypoplastic Concrete Constitutive Relationship,” ASCE, 1979;105(4):623-41.
[16] Saenz, I.P., ”Discussion of equation for the stress-strain curve of concrete, by P. Desay and S. Krishan” ACI Journal ,1964:61(9):1229-35.
[17] Kupfer, H.B., and Gerstle, K.H., 1973, “Behavior of Concrete under Biaxial Stresses,” Journal of the Engineering Mechanics Division, Vol.99, pp. 853-866.
[18] Balan, T.A., Filippou, F.C., and Popov, E.P., “Constitutive Model for 3D Cyclic Analysis of Concrete Structures,” ASCE, 1997;123(2):143-53
[19] Vassilis, K., Papanikolaou and Andreas, J., Kappos, “Confinement-sensitive plasticity constitutive model for concrete in triaxial compression,” International Journal of Solids and Structures “, 44(2007) 7021-7048.
[20] Peter, G., Karin, L. and Kent, G., ”Concrete in compression: a plasticity theory with a novel hardening law,” International Journal of Solids and Structures”, 39(2002) 5205-5233.
[21] Saenz, I.P., “Equation for stress-strain Curve of Concrete,” Journal Proceeding ACI, Vol.66, No.9, pp.1229-1235.
[22] Shirai, N., and Sato, T., 1981, “Inelastic Analysis of Reinforced Concrete Shear Wall Structures Material Modeling of Reinforced Concrete,” IABSE Colloquium.
[23] 王國昌, ”混凝土結構之非線性不連續變形分析” 臺灣國立中央大學博士論文, 2004.
[24] Balan, T.A., Spacone, E. and Kwon, M., “A 3D Hypoplastic Model for Cyclic Analysis of Concrete Structures,” Engineering Structures, 2001; 23:333-342
指導教授 王仲宇、王仁佐 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明