以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:226 、訪客IP:3.15.168.20
姓名 張良齊(Liang-chi Chang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 結合羅吉斯迴歸分析與細胞自動機預測紅樹林變遷之研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 紅樹林生態系統扮演著地球上重要的角色,其擁有自然生態價值、環境保護價值、經濟價值…等,但因人為砍伐與自然因素進而造成紅樹林快速減少,驅使人們開始重視紅樹林生態系統保育及復育工作。利用遙測科技可以獲得大範圍且長期的紅樹林分佈變化資訊,以利紅樹林生態系統長期監測,配合應用Landsat衛星影像可有效地了解紅樹林分佈變化情形。
本研究之研究區為伊洛瓦底江三角洲,為緬甸國內紅樹林之主要分佈地。本研究採用Landsat衛星影像分析紅樹林分佈變化,利用變遷偵測後影像分類方法提高影像分類成果精度,藉此獲得1989年、2001年、2014年紅樹林分佈,並加以比較三期分類成果以了解本研究區域內紅樹林分佈變化,從1989年至2014年紅樹林約減少了12%之多。為評估未來紅樹林分佈變化趨勢,本研究使用Probablistic Landscape Modeling and Simulation Tool (ProLAMS)來預測未來之紅樹林分佈變遷情形。此預測可分為三個步驟:首先,利用分類成果影像與數值地形模型找出可能影響紅樹林分佈變遷之影響因子,包含環境因子、區域性因子、相鄰近關係、光譜資訊等。由於紅樹林的分佈變遷具有空間異質性,本研究區內紅樹林面積增加與減少的區域分佈在不同的位置,本研究透過羅吉斯迴歸分析分別建立紅樹林消失與增加之空間機率模式,以獲得紅樹林消失與增加之機率圖。其次,根據已獲得之紅樹林消失與增加之機率圖,利用細胞自動機進行紅樹林分佈變遷模擬,藉由歷史資料律定模式參數並驗證模式之模擬能力,驗證精度(AUC)分別為0.81與0.79,其表示此模式適合用來模擬紅樹林分佈變化情形。最後,運用該模式模擬本研究區域內紅樹林分佈之未來變化。本研究認為使用ProLAMS可正確評估研究區域內紅樹林過去變化與未來趨勢,能提供相關管理者對紅樹林復育與保育之參考依據。摘要(英) Mangrove forest is a globally important ecosystem. It provides ecological, environmental and economic services for human society. In the Irrawaddy Delta, Myanmar, the overly agricultural development to meet the human pressing basic needs has driven the deforestation of mangrove forests, consequently causing environmental impacts. Thus, spatiotemporal understanding of changes in mangrove forests is important to evaluate current management practices of mangrove forests in regard to formulating a better long-term management strategy of mangrove ecosystem. This study focuses on not only evaluating current mangrove deforestation but also predicting changes of mangrove forests in the future. This study used classification after change detection method and the Probabilistic Landscape Modeling and Simulation Tool (ProLAMS) to evaluate current mangrove deforestation and to predict future mangrove distribution, respectively. ProLAMS aims to integrate remote sensing (RS) and geographic information system (GIS) in landscape modeling and prediction. Applying ProLAMS in mangrove prediction basically requires two components: a statistic model for evaluating the probability of mangrove change evolution, and a dynamic algorithm to simulate the mangrove change evolution. Specifically, ProLAMS uses logistic regression analysis for statistic modelling and cellular automata (CA) for simulating the mangrove change. The results proved the ability of using ProLAMS for predicting mangrove forests distribution in the future. 關鍵字(中) ★ 紅樹林
★ 伊洛瓦底江三角洲
★ 羅吉斯迴歸分析
★ 細胞自動機
★ Landsat影像關鍵字(英) ★ Mangrove
★ Irrawaddy Delta
★ Logistic regression
★ Cellular automata
★ Landsat imagery論文目次 摘要 .................................................................................................................... i
Abstract ............................................................................................................. iii
誌謝 .................................................................................................................. iv
目錄 ................................................................................................................... v
圖目錄 ............................................................................................................. viii
表目錄 ..............................................................................................................xii
第一章 緒論 .................................................................................................. 1
1.1 研究動機與目的 .................................................................................. 1
1.2 論文架構 .............................................................................................. 4
第二章 文獻回顧 ........................................................................................... 5
2.1 遙測影像應用於紅樹林監測 ............................................................... 5
2.2 變遷偵測與影像分類 .......................................................................... 6
2.3 紅樹林變遷模式 .................................................................................. 9
第三章 研究區域與研究資料 ..................................................................... 11
3.1 研究區域介紹 .................................................................................... 11
3.2.1 Landsat多光譜影像 .................................................................. 13
3.2.2 ASTER GDEM2數值地形模型影像 ........................................ 17
3.2.3 Google Earth影像 ..................................................................... 17
第四章 研究方法 ......................................................................................... 19
4.1 資料前處理 ........................................................................................ 21
4.1.1 Landsat影像資料前處理 .......................................................... 21
4.1.2 ASTER GDEM 2影像資料前處理 ........................................... 24
4.1.3 Google Earth影像資料前處理 .................................................. 28
4.2 變遷偵測 ............................................................................................ 31
4.2.1 偽變特徵萃取 ......................................................................... 31
4.2.2 影像分割 ................................................................................ 32
4.2.3 變遷偵測 ................................................................................ 33
4.3 物件導向式監督式分類..................................................................... 34
4.3.1 影像分割 .................................................................................. 34
4.3.2 選取訓練樣本 .......................................................................... 34
4.3.3 最鄰近法分類 .......................................................................... 35
4.3.4 分類精度評估 .......................................................................... 36
4.4 紅樹林變遷模擬 ................................................................................ 36
4.4.1 羅吉斯回歸分析 ....................................................................... 38
4.4.2 細胞自動機 .............................................................................. 39
第五章 成果與討論 ..................................................................................... 42
5.1 變遷偵測後物件導向式監督式分類 ................................................. 42
5.2 紅樹林變遷模擬 ................................................................................ 58
第六章 結論與建議 ..................................................................................... 87
6.1 結論 .................................................................................................... 87
6.2 建議 .................................................................................................... 88
參考文獻 ......................................................................................................... 90參考文獻 Adams, R., Bischof, L., 1994. “Seeded Region Growing”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp. 641-647.
Arsanjani, J. J., Helbich, M., Kainz, W., Boloorani, A. D., 2013. “Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion”, International Journal of Applied Earth Observation and Geoinformation, Vol. 21, pp. 265-275.
Aung, T. T., Than, M. M., Katsuhiro, O., Yukira, M., 2011. “Assessing the Status of Three Mangrove Species Restored by the Local Community in the Cyclone-Affected Area of the Ayeyarwady Delta, Myanmar”, Wetlands Ecology and Management, Vol. 19, No. 2, pp. 195-208.
Chen, C. F., Chang, L. Y., 2012. “Rapid Change Detection of Land Use in Urban Regions with the Aid of Pseudo-Variant Features”, Journal of Applied Remote Sensing, Vol. 6, No. 063574.
Chen, C. F., Son, N. T., Chang, N. B., Chen, C. R., Chang, L. Y., Valdez, M., Centeno, G., Thompson, C. A., Aceituno, J. L., 2013. “Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model”, Remote Sensing, Vol. 5, No. 12, pp. 6408-6426.
Chen, J., Gong, P., He, C., Pu, R., Shi, P., 2003. “Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis”, Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 4, pp. 369-379.
Congalton, R. G., 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data”, Remote Sensing of Environment, Vol. 37, No. 1, pp. 35-46.
Daniel, M. A., 2002. “Present State and Future of the World’S Mangrove Forests”, Environmental Conservation, Vol. 29, No. 3, pp. 331-349.
Desclée, B., Bogaert, P., Defourny, P., 2006. “Forest Change Detection by Statistical Object-Based Method”, Remote Sensing of Environment, Vol. 102, No. 1-2, pp. 1-11.
Edward, L. W., Nicholas, R. A. J., Jacob P., Daniel, A. F., Maung, M. T., Alan, D. Z., 2014. “Deforestation in the Ayeyarwady Delta and the Conservation Implications of an Internationally-Rngaged Myanmar”, Global Environmental Change, Vol. 24, pp. 321-333.
Food and Agriculture Organization of the United Nations (FAO), 2001. “Global Forest Resources Assessment 2000”, FAO Forestry Paper, Vol. 140.
Food and Agriculture Organization of the United Nations (FAO), 2007. “The World’s Mangroves 1980 – 2005”, FAO Forestry Paper, Vol. 153.
Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., Ellis, A. C., 1998. “Remote Sensing Techniques for Mangrove Mapping”, International Journal of Remote Sensing, Vol. 19, No. 5, pp. 935-956.
Hosmer, Jr., D. W., Lemeshow, S., 2000. “Applied Logistic Regression”, John Wiley & Sons, Canada.
Im, A., Jensen, J. R., Tullis, J. A., 2008. “Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation”, International Journal of Remote Sensing, Vol. 29, No. 2, pp. 399-423.
Kressler, F., Steinnocher, K., 1996. “Change Detection in Urban Areas Using Satellite Images and Spectral Mixture Analysis”, International Archives of Photogrammetry and Remote Sensing, Vol. XXXI - B7, pp. 379-383.
Lorenzo, E. N., De-Jesus, B. R., Jara, R. S., 1979. “Assessment of Mangrove Forest Deterioration in Zamboanga Peninsula, Philippines Using Landsat MSS Data”, Proceedings of the Thirteenth International Symposium on Remote Sensing of the Environment, pp. 1737-1745.
López, S., 2014. “Modeling Agricultural Change through Logistic Regression and Cellular Automata: a Case Study on Shifting Cultivation”, Journal of Geographic Information System, Vol. 6, No. 3, pp. 220-235.
Mahapatra, K., Kant, S., 2005. “Tropical Deforestation: a Multinomial Logistic Model and Some country-specific policy prescriptions”, Forest Policy and Economics, Vol. 7, No. 1, pp. 1-24.
Marion, G., 2003. “Interrelations between Mangrove Ecosystem, Local Economy and Social Sustainability in Caete´ Estuary, North Brazil”, Wetlands Ecology and Management, Vol. 11, No. 4, pp. 265-272.
Menard, S., 2002. “Applied Logistic Regression Analysis”, Sage Publication, United States of America.
Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., DeYoung, C., Fonseca, L., Grimsditch, G. (Eds)., 2009. “A Rapid Response Assessment, Blue Carbon, The Role of Healthy Oceans in Binding Carbon”, United Nations Environment Programme , Norway.
Obade, P. T., Koedam, N., Soetaert, K., Neukermans, G., Bogaert, J., Nyssen, F., Vannederveled, F., Berger, U., Dahdouh-Guebas, F., 2009. “Impact of Anthropogenic Disturbance on a Mangrove Forest Assessed by a 1D Cellular Automaton Model Using Lotka–Volterra-Type Competition”, International Journal of Design & Nature and Ecodynamics, Vol. 3, No. 4, pp. 296-320.
Ozesmi, S. L., Bauer, M. E., 2002. “Satellite Remote Sensing of Wetlands”, Wetlands Ecology and Management, Vol. 10, No. 5, pp. 381-402.
Peter, L., Daniel, S. K., Marc, K. S., Jake, B., Thomas, M., Melissa, S., 2005. “Forest cover change patterns in Myanmar (Burma) 1990−2000”, Environmental Conservation, Vol. 32, No. 4, pp. 356-364.
Pontius Jr., R. G., Schneider, L. C., 2001. “Land-Cover Change Model Validation by an ROC Method for the Ipswich Watershed, Massachusetts, USA”, Agriculture, Ecosystems & Environment, Vol. 85, No. 1-3, pp. 239-248.
Serra, P., Pons, X., Sauri, D., 2003. “Post-Classification Change Detection with Data from Different Sensors: Some Accuracy Considerations”, International Journal of Remote Sensing, Vol. 24, No. 16, pp. 3311-3340.
Singh, A., 1989. “Digital Change Detection Techniques Using Remotely-Sensed Data”, International Journal of Remote Sensing, Vol. 10, No. 6, pp. 989-1003.
Soares-Filho, B. S., Cerqueira, G. C., Pennachin, C. L., 2002. “DINAMICA— a Stochastic Cellular Automata Model Designed to Simulate the Landscape Dynamics in an Amazonian Colonization Frontier”, Ecological Modelling, Vol. 154, No. 3, pp. 217-235.
Spalding, M., Kainuma, M., Collins, L., 2010. “World Atlas of Mangroves”, Earthscan, UK and USA.
Tucker, C. J., Townshend, J. R. G., 2000. “Strategies for Monitoring Tropical Deforestation Using Satellite Data”, International Journal of Remote Sensing, Vol. 21, No. 6&7, pp. 1461-1471.
Walter, V., 2004. “Object-Based Classification of Remote Sensing Data for Change Detection”, ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 58, No. 3-4, pp. 225-238.
Wei, W., Chen, X., Ma, A., 2005. “Object-Oriented Information Extraction and Application in High-Resolution Remote Sensing Image”, IEEE International Geoscience and Remote Sensing Symposium, Vol. 6, pp. 3803-3806.
Whiteside, T. G., Boggs, G. S., Maier, S. W., 2011. “Comparing Object-Based and Pixel-Based Classifications for Mapping Savannas”, International Journal of Applied Earth Observation and Geoinformation, Vol. 13, No. 6, pp. 884-893.
Yang, X., 2009. “Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management”, Springer-Verlag Berlin Heidelberg, USA.
指導教授 陳繼藩(Chi-farn Chen) 審核日期 2014-7-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare