以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:130 、訪客IP:3.138.172.222
姓名 謝明達(Ming-Da Hsieh) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 基礎裸露鋼筋混凝土橋梁之抗震行為與能力評估 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 由於台灣之特殊地理位置與地形,使得島內橋梁於雨季中經常飽受洪水衝擊,此外,人為與天然的災害造成河道改變、河床沖刷、以及基礎淘空,大幅地降低橋梁之耐震能力。本文研究基礎裸露之鋼筋混凝土橋梁的耐震行為,使用LS-DYNA有限元素分析軟體,建立並模擬不同橋柱高度、以及不同基礎裸露深度下混凝土橋梁之非線性分析模型,其中,樁基土壤互制結構以彈簧元素模擬,並分別採用擬靜態側推與動態歷時分析,探討基礎裸露橋梁之抗震能力與倒塌機制。並利用ATC40(Applied Technology Council) 內之容量震譜性能評估方法,評估與調查基礎裸露鋼筋混凝土橋梁之抗震性能。 摘要(英) Due to the special geographical location and topography of Taiwan, bridges often suffer from flood impacts in the rainy season. In addition, natural and man-made disasters cause alterations of the river path, riverbed erosion, and basis underrun, reducing the seismic capacity of bridges. This research discusses the seismic performance of reinforced concrete bridges with exposing pile foundations by using LS-DYNA finite element analysis software. Nonlinear numerical bridge models with different height and exposed depth of bridge piers are established. Soil-structure interactions are modeled using spring element. The seismic performance of bridges are investigated using pushover analysis and dynamic analysis. The capacity spectrum method suggested in ATC-40(Applied Technology Council) is also implemented for evaluation and investigation of reinforced concrete bridges with exposing pile foundations. 關鍵字(中) ★ 容量震譜
★ 性能評估法
★ 基礎裸露
★ 非線性動態分析關鍵字(英) ★ ATC-40 論文目次 摘要...............................................I
ABSTRACT.........................................II
誌謝.............................................III
目錄..............................................IV
表目錄...........................................VIII
圖目錄.............................................XI
第一章 緒論.........................................1
1.1研究動機..........................................1
1.2研究目的..........................................1
1.3研究方法..........................................2
1.4論文架構..........................................2
第二章 文獻回顧......................................3
2.1 容量震譜法.......................................3
2.1.1容量震譜........................................4
2.1.2需求震譜........................................6
2.1.3需求震譜之折減...................................9
2.1.4性能點(Performance Point)之求取.................13
2.2 橋梁耐震評估相關研究...............................17
2.3橋梁沖刷相關試驗研究................................21
第三章 三維非線性鋼筋混凝土橋梁模型......................25
3.1 LS-DYNA簡介.....................................25
3.2鋼筋混凝土材料模型..................................25
3.3鋼筋混凝土結構模型之驗證.............................28
3.4橋梁樁土互制行為及沖刷機制模擬........................31
3.4.1樁土互制行為.....................................31
3.4.2基礎裸露模擬.....................................36
3.5模態分析..........................................42
第四章 靜力側推分析...................................52
4.1橋柱模型與基礎裸露情況...............................52
4.2擬靜態側推分析.....................................52
4.3側推分析結果.......................................53
4.3.1基礎裸露深度0公尺(未沖刷)之橋梁.....................53
4.3.2基礎裸露深度0.6公尺之橋梁側推分析....................58
4.3.3基礎裸露深度1.8公尺之橋梁側推分析....................63
4.3.4綜合比較.........................................68
4.4 ATC-40耐震評估....................................69
4.4.1容量震譜之決定....................................69
4.4.2需求震譜之決定....................................72
4.4.3 位移需求........................................73
4.4.4容量震譜法分析結果:DE=0...........................75
4.4.5容量震譜法分析結果:DE=0.6.........................77
4.4.6容量震譜法分析結果:DE=1.8.........................80
4.4.7綜合討論.........................................82
4.5靜力側推分析之結論...................................86
第五章 動態歷時分析....................................87
5.1 動態歷時加載資訊....................................87
5.2 動態歷時結果.......................................89
5.2.1 基礎未裸露(DE=0m)之地震歷時分析結果.................90
5.2.1.1回歸期為75年(50/50)之地震歷時.....................90
5.2.1.2回歸期為475年(10/50)之地震歷時....................91
5.2.1.3回歸期為2500年(2/50)之地震歷時....................99
5.2.2基礎裸露0.6公尺(DE=0.6m)之地震歷時分析結果...........107
5.2.2.1回歸期為75年(50/50)之地震歷時....................107
5.2.2.2回歸期為475年(10/50)之地震歷時...................112
5.2.2.3回歸期為2500年(2/50)之地震歷時...................119
5.2.3基礎裸露1.8公尺(DE=1.8m)之地震歷時分析結果...........122
5.2.3.1回歸期為75年(50/50)之地震歷時....................122
5.2.3.2回歸期為475年(10/50)之地震歷時...................125
5.2.3.3回歸期為2500年(2/50)之地震歷時...................128
5.2.4 綜合討論........................................133
5.2.4.1位移反應.......................................133
5.2.4.2 破壞機制與非彈性變形............................135
5.3動態歷時分析之結論...................................136
第六章 結論...........................................137
參考文獻...............................................140
附錄A 動態歷時結果(DE=0)................................142
附錄B 動態歷時結果(DE=0.6)..............................178
附錄C 動態歷時結果(DE=1.8)..............................214
附錄D 加載地震之加速度歷時與速度歷時........................250參考文獻 【1】 S. A. Freeman, J. P. Nicoletti and J. V. Tyrell, Evaluations to existing buildings for seismic risk-A case study of Puget sound naval shipyard, Washington, Proceeding of first U.S. National Conference on Earthquake Engineering, pp. 113-122, 1975
【2】 J. A. Mahaney, S. A. Freeman, The capacity spectrum method of evaluating structural response during the loma prieta earthquake, Proc. 1993 National Earthquake Conference, pp. 501-510, 1993
【3】 Applied Technology Council, Seismic evaluation and retrofit of concrete buildings, Volume 1, Nov, 1996
【4】 A. K. Chopra, Dynamics of structures: Theory and applications to earthquake engineering,1995
【5】 葉勇凱,蕭輔沛,邱聰智,林金祿,校舍結構耐震能力提升之技術與試驗驗證, 2006
【6】 林子堯,林炳昌,含RC牆建築物之耐震能力評估研究,2004
【7】 K. Kawashima, Seismic Design and Retrofit of Bridges, 12th World Conference on Earthquake Engineering, 2000
【8】 M. A. Saadeghvaziri, A.R. Yazdani-Motlagh, Seismic behavior and capacity/demand analyses of three multi-span simply supported bridges, Engineering Structures 30,pp. 54-66,2008
【9】 A. N. Le, Evaluation of the seismic performance of bridges using the seismic performance index, JSCE第30回土木学会地震工学研究発表会論文集, 2008
【10】 Y. C. Ou, H. D. Fan, N. D. Nguyen, Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack, Earthquake Engineering & Structureal Dynamics, Volume 42, 2013
【11】 D. Cardone, G. Perrone and M. Dolce, Seismic risk assessment of highway bridges, 1st US-Italy seismic Bridge Workshop, 2007
【12】 I. C. Tsai and Y. H. Chen, Seismic Capacity evaluation of bridges with scoured group pile foundations, 4th International Conference on Earthquake Engineering, Oct, 2006
【13】 宋裕祺,張國鎮,陳晨,蔡益超,王俊穎,蔡雨呈,橋梁耐洪能力評估方法介紹,土木水利第三十八卷第三期,2011,六月
【14】 Livermore software technology corporation, LS-DYNA keyword User’s Manual Volume I., 2007
【15】 財團法人中華顧問工程司,莫拉克颱風雙園大橋災害致災原因分析研究委託服務工作期末報告書, 2011
【16】 L. E. Schwer and L. J. Malvar, Simplified concrete modeling with *MAT_CONCRETE_DAMAGE_REL3, JRI LS-DYNA user week, 2005
【17】 T. Rabczuk and G. Zi, Numerical fracture analysis of prestressed concrete beams, International Journal of Concrete Structures and Materials, 2008
【18】 游文吉,預力混凝土橋梁受洪水沖刷後之側推與逐漸倒塌之研究,2012
【19】 日本道路建築協會,道路橋示方書同解說,1996
【20】 S.S.C. Liao, R.V. Whitman, Overburden correction factors for SPT in sand, Volume 3, pp. 373-377, Journal of Geotechnical Engineering, 1986
【21】 盧威廷,耦合結構牆地震行為與性能化設計法,2013指導教授 洪崇展(Chung-Chan Hung) 審核日期 2014-8-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare