參考文獻 |
Asakura, A., Lyons, G.E., and Tapscott, S.J. (1995). The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle. Developmental biology 171, 386-398.
Barth, A.I., Pollack, A.L., Altschuler, Y., Mostov, K.E., and Nelson, W.J. (1997). NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. The Journal of cell biology 136, 693-706.
Borello, U., Berarducci, B., Murphy, P., Bajard, L., Buffa, V., Piccolo, S., Buckingham, M., and Cossu, G. (2006). The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133, 3723-3732.
Bouillet, P., Oulad-Abdelghani, M., Ward, S.J., Bronner, S., Chambon, P., and Dolle, P. (1996). A new mouse member of the Wnt gene family, mWnt-8, is expressed during early embryogenesis and is ectopically induced by retinoic acid. Mechanisms of development 58, 141-152.
Brack, A.S., Conboy, I.M., Conboy, M.J., Shen, J., and Rando, T.A. (2008). A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell stem cell 2, 50-59.
Braun, T., and Gautel, M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature reviews Molecular cell biology 12, 349-361.
Brunelli, S., Relaix, F., Baesso, S., Buckingham, M., and Cossu, G. (2007). Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Developmental biology 304, 604-614.
Chen, J.C., Love, C.M., and Goldhamer, D.J. (2001). Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Developmental dynamics : an official publication of the American Association of Anatomists 221, 274-288.
Christ, B., and Ordahl, C.P. (1995). Early stages of chick somite development. Anatomy and embryology 191, 381-396.
Church, V.L., and Francis-West, P. (2002). Wnt signalling during limb development. The International journal of developmental biology 46, 927-936.
Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.
Goldhamer, D.J., Brunk, B.P., Faerman, A., King, A., Shani, M., and Emerson, C.P., Jr. (1995). Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 121, 637-649.
Gurpur, P.B., Liu, J., Burkin, D.J., and Kaufman, S.J. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. The American journal of pathology 174, 999-1008.
Hirsinger, E., Jouve, C., Malapert, P., and Pourquie, O. (1998). Role of growth factors in shaping the developing somite. Molecular and cellular endocrinology 140, 83-87.
Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development 17, 2205-2232.
Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483-494.
Hu, P., Geles, K.G., Paik, J.H., DePinho, R.A., and Tjian, R. (2008). Codependent activators direct myoblast-specific MyoD transcription. Developmental cell 15, 534-546.
Ikeya, M., and Takada, S. (1998). Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125, 4969-4976.
James, R.G., Conrad, W.H., and Moon, R.T. (2008). Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods in molecular biology 468, 131-144.
Kablar, B., Krastel, K., Ying, C., Asakura, A., Tapscott, S.J., and Rudnicki, M.A. (1997). MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729-4738.
Kablar, B., Krastel, K., Ying, C., Tapscott, S.J., Goldhamer, D.J., and Rudnicki, M.A. (1999). Myogenic determination occurs independently in somites and limb buds. Developmental biology 206, 219-231.
Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B., Jory, A., Gomes, D., and Tajbakhsh, S. (2005). Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes & development 19, 1426-1431.
Kim, C.H., Neiswender, H., Baik, E.J., Xiong, W.C., and Mei, L. (2008). Beta-catenin interacts with MyoD and regulates its transcription activity. Molecular and cellular biology 28, 2941-2951.
Korzh, V. (2008). Winding roots of Wnts. Zebrafish 5, 159-168.
Ludolph, D.C., and Konieczny, S.F. (1995). Transcription factor families: muscling in on the myogenic program. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9, 1595-1604.
Maroto, M., Bone, R.A., and Dale, J.K. (2012). Somitogenesis. Development 139, 2453-2456.
Menges, C.W., Sementino, E., Talarchek, J., Xu, J., Chernoff, J., Peterson, J.R., and Testa, J.R. (2012). Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways. Molecular cancer research : MCR 10, 1178-1188.
Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K., and Varmus, H. (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131-136.
Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes & development 8, 1-8.
Ott, M.O., Bober, E., Lyons, G., Arnold, H., and Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 1097-1107.
Pirkmajer, S., and Chibalin, A.V. (2011). Serum starvation: caveat emptor. American journal of physiology Cell physiology 301, C272-279.
Rao, T.P., and Kuhl, M. (2010). An updated overview on Wnt signaling pathways: a prelude for more. Circulation research 106, 1798-1806.
Rhodes, S.J., and Konieczny, S.F. (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes & development 3, 2050-2061.
Rudnicki, M.A., Schnegelsberg, P.N.J., Stead, R.H., Braun, T., Arnold, H.H., and Jaenisch, R. (1993). Myod or Myf-5 Is Required for the Formation of Skeletal-Muscle. Cell 75, 1351-1359.
Sabourin, L.A., and Rudnicki, M.A. (2000). The molecular regulation of myogenesis. Clinical genetics 57, 16-25.
Sassoon, D., Lyons, G., Wright, W.E., Lin, V., Lassar, A., Weintraub, H., and Buckingham, M. (1989). Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341, 303-307.
Tran, T.H., Wang, X., Browne, C., Zhang, Y., Schinke, M., Izumo, S., and Burcin, M. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem cells 27, 1869-1878.
von Maltzahn, J., Bentzinger, C.F., and Rudnicki, M.A. (2012). Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nature cell biology 14, 186-191.
Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd, and Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448-452.
Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current opinion in cell biology 8, 877-889.
Yun, M.S., Kim, S.E., Jeon, S.H., Lee, J.S., and Choi, K.Y. (2005). Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. Journal of cell science 118, 313-322.
Zetser, A., Gredinger, E., and Bengal, E. (1999). p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. The Journal of biological chemistry 274, 5193-5200.
Zhang, H., Yu, C., Dai, J., Keller, J.M., Hua, A., Sottnik, J.L., Shelley, G., Hall, C.L., Park, S.I., Yao, Z., et al. (2014). Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of beta-catenin activation of the DKK1 promoter in prostate cancer. Oncogene 33, 2464-2477.
Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A., and Wu, W. (2012). A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene 31, 1001-1012.
|