參考文獻 |
Barnea, E., and Bergman, Y. (2000). Synergy of SF1 and RAR in activation of Oct-3/4 promoter. The Journal of biological chemistry 275, 6608-6619.
Brehm, A., Ohbo, K., and Scholer, H. (1997). The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Molecular and cellular biology 17, 154-162.
Briggs, R., and King, T.J. (1952). Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs′ Eggs. Proceedings of the National Academy of Sciences of the United States of America 38, 455-463.
Chen, G., Huang, L.D., Jiang, Y.M., and Manji, H.K. (1999). The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. Journal of neurochemistry 72, 1327-1330.
Chuang, Y.S., Huang, W.H., Park, S.W., Persaud, S.D., Hung, C.H., Ho, P.C., and Wei, L.N. (2011). Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem cells 29, 660-669.
Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369-1373.
Detich, N., Bovenzi, V., and Szyf, M. (2003). Valproate induces replication-independent active DNA demethylation. The Journal of biological chemistry 278, 27586-27592.
Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., and Herrera, L.A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer treatment reviews 34, 206-222.
Fuhrmann, G., Chung, A.C., Jackson, K.J., Hummelke, G., Baniahmad, A., Sutter, J., Sylvester, I., Scholer, H.R., and Cooney, A.J. (2001). Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Developmental cell 1, 377-387.
Fuhrmann, G., Sylvester, I., and Scholer, H.R. (1999). Repression of Oct-4 during embryonic cell differentiation correlates with the appearance of TRIF, a transiently induced DNA-binding factor. Cellular and molecular biology 45, 717-724.
Go, H.S., Seo, J.E., Kim, K.C., Han, S.M., Kim, P., Kang, Y.S., Han, S.H., Shin, C.Y., and Ko, K.H. (2011). Valproic acid inhibits neural progenitor cell death by activation of NF-kappaB signaling pathway and up-regulation of Bcl-XL. Journal of biomedical science 18, 48.
Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 20, 6969-6978.
Gu, P., Goodwin, B., Chung, A.C., Xu, X., Wheeler, D.A., Price, R.R., Galardi, C., Peng, L., Latour, A.M., Koller, B.H., et al. (2005). Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Molecular and cellular biology 25, 3492-3505.
Gupta, P., Ho, P.C., Huq, M.M., Ha, S.G., Park, S.W., Khan, A.A., Tsai, N.P., and Wei, L.N. (2008). Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proceedings of the National Academy of Sciences of the United States of America 105, 11424-11429.
Gurpur, P.B., Liu, J., Burkin, D.J., and Kaufman, S.J. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. The American journal of pathology 174, 999-1008.
He, S., Nakada, D., and Morrison, S.J. (2009). Mechanisms of stem cell self-renewal. Annual review of cell and developmental biology 25, 377-406.
Herr, W., and Cleary, M.A. (1995). The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes & development 9, 1679-1693.
Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature biotechnology 26, 795-797.
Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26, 1269-1275.
Jeong, A.Y., Lee, M.Y., Lee, S.H., Park, J.H., and Han, H.J. (2009). PPARdelta agonist-mediated ROS stimulates mouse embryonic stem cell proliferation through cooperation of p38 MAPK and Wnt/beta-catenin. Cell cycle 8, 611-619.
Johnson, M.H., and McConnell, J.M. (2004). Lineage allocation and cell polarity during mouse embryogenesis. Seminars in cell & developmental biology 15, 583-597.
Jung, G.A., Yoon, J.Y., Moon, B.S., Yang, D.H., Kim, H.Y., Lee, S.H., Bryja, V., Arenas, E., and Choi, K.Y. (2008). Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC cell biology 9, 66.
Kim, J.N., Kim, M.K., Cho, K.S., Choi, C.S., Park, S.H., Yang, S.I., Joo, S.H., Park, J.H., Bahn, G., Shin, C.Y., et al. (2013). Valproic Acid Regulates alpha-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes. Biomolecules & therapeutics 21, 222-228.
Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T., and Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and biophysical research communications 340, 183-189.
Kultima, K., Nystrom, A.M., Scholz, B., Gustafson, A.L., Dencker, L., and Stigson, M. (2004). Valproic acid teratogenicity: a toxicogenomics approach. Environmental health perspectives 112, 1225-1235.
Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H.R., Hayek, A., and Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem cells 27, 2992-3000.
Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H.S., Hao, E., Hayek, A., et al. (2009). A chemical platform for improved induction of human iPSCs. Nature methods 6, 805-808.
Lowry, W.E., and Plath, K. (2008). The many ways to make an iPS cell. Nature biotechnology 26, 1246-1248.
Minucci, S., Botquin, V., Yeom, Y.I., Dey, A., Sylvester, I., Zand, D.J., Ohbo, K., Ozato, K., and Scholer, H.R. (1996). Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. The EMBO journal 15, 888-899.
Molofsky, A.V., Pardal, R., and Morrison, S.J. (2004). Diverse mechanisms regulate stem cell self-renewal. Current opinion in cell biology 16, 700-707.
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391.
Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell structure and function 26, 137-148.
Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics 24, 372-376.
Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472.
Okazawa, H., Okamoto, K., Ishino, F., Ishino-Kaneko, T., Takeda, S., Toyoda, Y., Muramatsu, M., and Hamada, H. (1991). The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. The EMBO journal 10, 2997-3005.
Ovitt, C.E., and Scholer, H.R. (1998). The molecular biology of Oct-4 in the early mouse embryo. Molecular human reproduction 4, 1021-1031.
Pan, G.J., Chang, Z.Y., Scholer, H.R., and Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell research 12, 321-329.
Park, S.W., Hu, X., Gupta, P., Lin, Y.P., Ha, S.G., and Wei, L.N. (2007). SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nature structural & molecular biology 14, 68-75.
Pesce, M., and Scholer, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem cells 19, 271-278.
Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A., and Klein, P.S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of biological chemistry 276, 36734-36741.
Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. Clinical genetics 68, 106-112.
Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Scholer, H.R. (1991). Octamania: the POU factors in murine development. Trends in genetics : TIG 7, 323-329.
Scholer, H.R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435-439.
Schoorlemmer, J., van Puijenbroek, A., van Den Eijnden, M., Jonk, L., Pals, C., and Kruijer, W. (1994). Characterization of a negative retinoic acid response element in the murine Oct4 promoter. Molecular and cellular biology 14, 1122-1136.
Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., and Ding, S. (2008a). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell stem cell 3, 568-574.
Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008b). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell stem cell 2, 525-528.
Sylvester, I., and Scholer, H.R. (1994). Regulation of the Oct-4 gene by nuclear receptors. Nucleic acids research 22, 901-911.
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current biology : CB 11, 1553-1558.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Wobus, A.M., and Boheler, K.R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological reviews 85, 635-678.
Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell stem cell 1, 39-49.
Yamanaka, S. (2009). A fresh look at iPS cells. Cell 137, 13-17.
Yeom, Y.I., Fuhrmann, G., Ovitt, C.E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., and Scholer, H.R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881-894.
Zhang, C., Zhu, J., Zhang, J., Li, H., Zhao, Z., Liao, Y., Wang, X., Su, J., Sang, S., Yuan, X., et al. (2014). Neuroprotective and anti-apoptotic effects of valproic acid on adult rat cerebral cortex through ERK and Akt signaling pathway at acute phase of traumatic brain injury. Brain Research 1555, 1-9.
Zhang, H., and Wang, Z.Z. (2008). Mechanisms that mediate stem cell self-renewal and differentiation. Journal of cellular biochemistry 103, 709-718.
|