博碩士論文 101224019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:148 、訪客IP:3.149.23.182
姓名 李珮寧(Pei-Ning Li)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討丙戊酸活化Oct4啟動子的機制
(Defining the mechanisms mediating valproic acid enhanced Oct4 promoter activity)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ KLHL17在癲癇與自閉症中之角色
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細胞經由表達特定的轉錄因子,包含Oct4、SOX2、Klf4、c-Myc,使得細胞能夠重新編程產生誘導型多能性幹細胞,這類型的細胞可用來修補受損的組織,治療目前無法以傳統醫療治癒的疾病,例如:杜顯氏肌肉萎縮症,這項技術的優點在於避免了器官移殖可能發生的病人免疫排斥和傳統使用胚胎幹細胞的倫理道德問題,然而目前體細胞重新編程的技術仍存在一些待克服的問題,例如,使用反轉錄病毒作為載體,可能造成外源基因隨機插入染色體,進而干擾內源基因正常的表達,另一個潛在的問題則是產生誘導型多能性幹細胞的效率依然很低。因此,近年來有文獻指出加入小分子化合物-丙戊酸 (VPA),是一種組蛋白去乙醯酶抑制劑能夠增加體細胞重新編程的效率。在我們實驗室先前的研究中證實,丙戊酸會作用在Oct4啟動子的賀爾蒙反應調控區域 (HRE) 來活化Oct4啟動子的活性,但丙戊酸調控Oct4啟動子的機制還不清楚。因此,在這篇研究中,我們證明丙戊酸不是經由抑制組蛋白去乙醯化來調控Oct4啟動子的活性,我們發現丙戊酸會經由誘發PI3K/Akt/mTOR訊息傳遞來活化Oct4啟動子,更進一步我們證明,對丙戊酸會影響某些特定核受體 (NRs),例如,減緩TR2和COUP-TFΠ對Oct4啟動子的抑制,以及增強PPARδ對Oct4啟動子的活性,來活化Oct4啟動子。我們認為在體細胞重新編程的過程中,丙戊酸是透過活化PI3K/Akt/mTOR訊息傳遞來活化Oct4啟動子進而提升產生誘導型多能性幹細胞的效率。
摘要(英) Reprograming of somatic cells into induced pluripotent stem cells (iPSC) by expressing Oct4, Sox2, Klf4, and c-Myc has paved the way for producing patient-specific pluripotent cells to treat inherited diseases, such as Duchenne muscular dystrophy. However, current reprogramming approach has some risks, such as viral transduction caused random integration of multiple pro-viral copies and low efficiency. Recently, it was shown that a small compound called valporic acid (VPA), a histone deacetylase (HDAC) inhibitor, could improve reprogramming efficiency. Our previous study had shown that VPA can enhance Oct4 promoter activity by targeting its proximal hormone response element (HRE), but the underlying mechanism is not clearly defined. In this study, we found that inhibition of HDACs might play a minor role in the VPA mediated activation of Oct4 promoter. We discovered that VPA activated Oct4 promoter through inducing the PI3K/Akt/mTOR signaling pathway. The proximal HRE of Oct4 promoter was targeted by several nuclear receptors and we found that VPA reversed the repressive effect of some NRs, such as TR2 (nuclear receptor subfamily 2, group C, member 1) and COUP-TFII (nuclear receptor subfamily 2, group F, member 2), but enhanced the inducing effect of other NRs, including PPARδ (peroxisome proliferator activator receptor delta). We concluded that VPA triggered PI3K/Akt/mTOR signaling plays critical role in activating Oct4 promoter activity during somatic reprogramming.
關鍵字(中) ★ 丙戊酸 關鍵字(英) ★ VPA
★ Oct4
★ TR2
★ PPARδ
★ PI3K/Akt/mTOR
論文目次 一、 緒論 .............................................................. 1
1-1、 幹細胞 (Stem cells) 特性 ........................................................................................... 1
1-2、 Oct4 調控與幹細胞的多能性 (pluripotency)............................................................. 2
1-3、 誘導型多能性幹細胞 (Induced pluripotent stem cells, iPSCs) ................................. 4
1-4、 丙戊酸 (Valproic acid) ................................................................................................ 5
1-5、 研究動機與目的 .......................................................................................................... 6
二、 實驗材料和方法 .................................................... 7
2-1、 細胞株 .......................................................................................................................... 7
2-1-1、 老鼠肌纖維母細胞:Mouse myoblast cells (C2C12) ................................................. 7
2-1-2、 老鼠胚胎癌細胞:Mouse embryonic carcinoma cells (P19 EC) ................................ 8
2-1-3、 老鼠多能性胚胎幹細胞:Mouse pluripotent embryonic stem cell (ES-D3) .............. 9
2-1-4、 老鼠纖維母細胞細胞:Mouse fibroblast (STO) ......................................................... 9
2-2、 載體構築 (Cloning) ..................................................................................................... 9
2-2-1、 載體構築 (Cloning) ...................................................................................................... 9
2-2-2、 聚合酶鏈鎖反應 (PCR, Polymerase Chain Reaction) ............................................... 11
2-2-3、 聚合酶鏈鎖反應產物的修飾 ..................................................................................... 11
2-2-4、 插入 (Insert) DNA 的純化 ......................................................................................... 11
2-2-5、 插入 DNA 或載體 DNA 的聚合酶反應 (Klenow) ................................................... 11
2-2-6、 載體 DNA 的 5’端去磷酸根反應 (C.I.P) ................................................................. 12 II

2-2-7、 接合反應 (Ligation) ................................................................................................... 12
2-2-8、 大腸桿菌的轉型作用 (Transformation) .................................................................... 12
2-2-9、 質體 DNA 的萃取 ...................................................................................................... 12
2-2-10、 篩選 (Screening) ........................................................................................................ 13
2-3、 RT-PCR ...................................................................................................................... 13
2-3-1、 Total RNA 製備 .......................................................................................................... 13
2-3-2、 反轉錄酶反應 (RT, Reverse Transcriptase) .............................................................. 13
2-3-3、 聚合酶連鎖反應 (PCR, Polymerase Chain Reaction) ............................................... 14
2-4、 Real Time PCR 定量實驗 .......................................................................................... 15
2-5、 轉染實驗 .................................................................................................................... 15
2-5-1、 細胞培養 ..................................................................................................................... 15
2-5-2、 轉染作用 (Transfection) ............................................................................................ 16
2-5-3、 螢火蟲冷光活性方法 (Luciferase Activity Assay) ................................................... 16
2-6、 體外蛋白質表達系統 (TNT Coupled Transcription/ Translation Systems) ............ 16
2-7、 凝膠遷移滯後實驗(EMSA, electrophoretic mobility shift assays) ..................... 17
2-7-1、 黏合 (Annealing) ........................................................................................................ 17
2-7-2、 DNA 探針的標定(labelling) ....................................................................................... 17
2-7-3、 DNA 探針的純化 ....................................................................................................... 18
2-7-4、 凝膠製備 (Gel Casting) ............................................................................................. 18
2-7-5、 蛋白質和核酸鍵結 (Protein-DNA binding) .............................................................. 19
2-7-6、 DNA 聚丙烯酰胺凝膠電泳 (DNA-PAGE) 和放射線偵測 ..................................... 19
2-8、 西方墨點實驗 (Western blot) ................................................................................... 19
2-8-1、 Total Protein Lysate 的製備 ....................................................................................... 19
2-8-2、 SDS-聚丙烯酰胺凝膠電泳 (SDS-PAGE) ................................................................. 19
2-8-3、 Blocking 以及 Antibody 辨識 .................................................................................... 20
2-8-4、 蛋白質脫附 (Striping) ................................................................................................ 20 III

2-9、 染色質免疫沉澱 (CHIP, Chromatin immunoprecipitation assay) ........................... 21
2-9-1、 細胞交互鍵結的固定 (Fixation of Cross-Linked Cells) ........................................... 21
2-9-2、 染色質交互鍵結的製備 (Preparation of Cross-Linked Chromatin) ......................... 21
2-9-3、 Protein A from Staphylococcus aures 製備與置換..................................................... 22
2-9-4、 染色質免疫沉澱 (Chromatin immunoprecipitation) ................................................. 22
2-9-5、 DNA 的萃取 ............................................................................................................... 23
三、 實驗結果 ......................................................... 24
3-1. VPA 間接透過抑制 HDACs 來影響 Oct4 promoter 的活性 ................................... 24
3-2. Oct4 上游近端增強子調控區域不是 VPA 主要影響 Oct4 promoter 活性的區域 24
3-3. 核接受體 (NRs) -TR2 會直接地結合在 Oct4 proximal promoter 的 HRE 區域,
PPARδ 則不會 ........................................................................................................... 25
3-4. NRs 參與調控 Oct4 promoter 的機制中,TR2 扮演抑制者、PPARδ 則扮演活化
者的角色 .................................................................................................................... 26
3-5. VPA 降低 TR2 和 Oct4 promoter 之間的鍵結,且減緩 TR2 抑制 Oct4 promoter
的活性,但不影響 PPARδ 和 Oct4 promoter 之間的鍵結 ..................................... 27
3-6. 在調控 Oct4 promoter 的機轉中,TR2、PPARδ 可能扮演重覆性的角色 ........... 28
3-7. VPA 會增強細胞內 PI3K/Akt/mTOR 的訊息傳遞 ................................................. 28
3-8. VPA 經由影響 PI3K/Akt/mTOR 的訊息傳遞來減緩 TR2 對 Oct4 promoter 活性
的抑制 ........................................................................................................................ 29
3-9. VPA 調控 Oct4 的表現具有階段性的現象,在多能性的細胞中,VPA 會抑制
Oct4 的表現 ............................................................................................................... 30
四、 討論 ............................................................. 31
五、 圖表 ............................................................. 36
圖一、VPA 間接透過抑制 HDACs 來影響 Oct4 promoter 的活性 ................................. 36 IV

圖二、Oct4 近端增強子調控區域不是 VPA 主要影響 Oct4 promoter 活性的區域 ...... 37
圖三、核接受體 (NRs) -TR2 會直接地結合在 Oct4 的 HRE 區域,PPARδ 則不會 ... 38
圖四、NRs 參與調控 Oct4 promoter 的機制中,TR2 扮演抑制者,PPARδ 則扮演活
化者的角色 ................................................................................................................ 39
圖五、VPA 降低 TR2 和 Oct4 promoter 之間的作用,且減緩 TR2 抑制 Oct4 promoter
的活性,但不影響 PPARδ 和 Oct4 promoter 之間的作用 ..................................... 40
圖六、在調控 Oct4 promoter 的機轉中,TR2、PPARδ 可能扮演重覆性的角色 ......... 42
圖七、VPA 會增強細胞內 PI3K/Akt/mTOR 的訊息傳遞 ............................................... 44
圖八、VPA 經由影響 PI3K/Akt/mTOR 的訊息傳遞來減緩 TR2 對 Oct4 promoter 活
性的抑制 .................................................................................................................... 45
圖九、VPA 調控 Oct4 的表現具有階段性的現象,在多能性的細胞中,VPA 會抑制
Oct4 的表現 ............................................................................................................... 46
六、 參考文獻 ......................................................... 48
參考文獻 Barnea, E., and Bergman, Y. (2000). Synergy of SF1 and RAR in activation of Oct-3/4 promoter. The Journal of biological chemistry 275, 6608-6619.
Brehm, A., Ohbo, K., and Scholer, H. (1997). The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Molecular and cellular biology 17, 154-162.
Briggs, R., and King, T.J. (1952). Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs′ Eggs. Proceedings of the National Academy of Sciences of the United States of America 38, 455-463.
Chen, G., Huang, L.D., Jiang, Y.M., and Manji, H.K. (1999). The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. Journal of neurochemistry 72, 1327-1330.
Chuang, Y.S., Huang, W.H., Park, S.W., Persaud, S.D., Hung, C.H., Ho, P.C., and Wei, L.N. (2011). Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem cells 29, 660-669.
Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369-1373.
Detich, N., Bovenzi, V., and Szyf, M. (2003). Valproate induces replication-independent active DNA demethylation. The Journal of biological chemistry 278, 27586-27592.
Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., and Herrera, L.A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer treatment reviews 34, 206-222.
Fuhrmann, G., Chung, A.C., Jackson, K.J., Hummelke, G., Baniahmad, A., Sutter, J., Sylvester, I., Scholer, H.R., and Cooney, A.J. (2001). Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Developmental cell 1, 377-387.
Fuhrmann, G., Sylvester, I., and Scholer, H.R. (1999). Repression of Oct-4 during embryonic cell differentiation correlates with the appearance of TRIF, a transiently induced DNA-binding factor. Cellular and molecular biology 45, 717-724.
Go, H.S., Seo, J.E., Kim, K.C., Han, S.M., Kim, P., Kang, Y.S., Han, S.H., Shin, C.Y., and Ko, K.H. (2011). Valproic acid inhibits neural progenitor cell death by activation of NF-kappaB signaling pathway and up-regulation of Bcl-XL. Journal of biomedical science 18, 48.
Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 20, 6969-6978.
Gu, P., Goodwin, B., Chung, A.C., Xu, X., Wheeler, D.A., Price, R.R., Galardi, C., Peng, L., Latour, A.M., Koller, B.H., et al. (2005). Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Molecular and cellular biology 25, 3492-3505.
Gupta, P., Ho, P.C., Huq, M.M., Ha, S.G., Park, S.W., Khan, A.A., Tsai, N.P., and Wei, L.N. (2008). Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proceedings of the National Academy of Sciences of the United States of America 105, 11424-11429.
Gurpur, P.B., Liu, J., Burkin, D.J., and Kaufman, S.J. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. The American journal of pathology 174, 999-1008.
He, S., Nakada, D., and Morrison, S.J. (2009). Mechanisms of stem cell self-renewal. Annual review of cell and developmental biology 25, 377-406.
Herr, W., and Cleary, M.A. (1995). The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes & development 9, 1679-1693.
Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature biotechnology 26, 795-797.
Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26, 1269-1275.
Jeong, A.Y., Lee, M.Y., Lee, S.H., Park, J.H., and Han, H.J. (2009). PPARdelta agonist-mediated ROS stimulates mouse embryonic stem cell proliferation through cooperation of p38 MAPK and Wnt/beta-catenin. Cell cycle 8, 611-619.
Johnson, M.H., and McConnell, J.M. (2004). Lineage allocation and cell polarity during mouse embryogenesis. Seminars in cell & developmental biology 15, 583-597.
Jung, G.A., Yoon, J.Y., Moon, B.S., Yang, D.H., Kim, H.Y., Lee, S.H., Bryja, V., Arenas, E., and Choi, K.Y. (2008). Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC cell biology 9, 66.
Kim, J.N., Kim, M.K., Cho, K.S., Choi, C.S., Park, S.H., Yang, S.I., Joo, S.H., Park, J.H., Bahn, G., Shin, C.Y., et al. (2013). Valproic Acid Regulates alpha-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes. Biomolecules & therapeutics 21, 222-228.
Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T., and Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and biophysical research communications 340, 183-189.
Kultima, K., Nystrom, A.M., Scholz, B., Gustafson, A.L., Dencker, L., and Stigson, M. (2004). Valproic acid teratogenicity: a toxicogenomics approach. Environmental health perspectives 112, 1225-1235.
Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H.R., Hayek, A., and Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem cells 27, 2992-3000.
Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H.S., Hao, E., Hayek, A., et al. (2009). A chemical platform for improved induction of human iPSCs. Nature methods 6, 805-808.
Lowry, W.E., and Plath, K. (2008). The many ways to make an iPS cell. Nature biotechnology 26, 1246-1248.
Minucci, S., Botquin, V., Yeom, Y.I., Dey, A., Sylvester, I., Zand, D.J., Ohbo, K., Ozato, K., and Scholer, H.R. (1996). Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. The EMBO journal 15, 888-899.
Molofsky, A.V., Pardal, R., and Morrison, S.J. (2004). Diverse mechanisms regulate stem cell self-renewal. Current opinion in cell biology 16, 700-707.
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391.
Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell structure and function 26, 137-148.
Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics 24, 372-376.
Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472.
Okazawa, H., Okamoto, K., Ishino, F., Ishino-Kaneko, T., Takeda, S., Toyoda, Y., Muramatsu, M., and Hamada, H. (1991). The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. The EMBO journal 10, 2997-3005.
Ovitt, C.E., and Scholer, H.R. (1998). The molecular biology of Oct-4 in the early mouse embryo. Molecular human reproduction 4, 1021-1031.
Pan, G.J., Chang, Z.Y., Scholer, H.R., and Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell research 12, 321-329.
Park, S.W., Hu, X., Gupta, P., Lin, Y.P., Ha, S.G., and Wei, L.N. (2007). SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nature structural & molecular biology 14, 68-75.
Pesce, M., and Scholer, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem cells 19, 271-278.
Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A., and Klein, P.S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of biological chemistry 276, 36734-36741.
Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. Clinical genetics 68, 106-112.
Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Scholer, H.R. (1991). Octamania: the POU factors in murine development. Trends in genetics : TIG 7, 323-329.
Scholer, H.R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435-439.
Schoorlemmer, J., van Puijenbroek, A., van Den Eijnden, M., Jonk, L., Pals, C., and Kruijer, W. (1994). Characterization of a negative retinoic acid response element in the murine Oct4 promoter. Molecular and cellular biology 14, 1122-1136.
Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., and Ding, S. (2008a). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell stem cell 3, 568-574.
Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008b). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell stem cell 2, 525-528.
Sylvester, I., and Scholer, H.R. (1994). Regulation of the Oct-4 gene by nuclear receptors. Nucleic acids research 22, 901-911.
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current biology : CB 11, 1553-1558.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Wobus, A.M., and Boheler, K.R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological reviews 85, 635-678.
Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell stem cell 1, 39-49.
Yamanaka, S. (2009). A fresh look at iPS cells. Cell 137, 13-17.
Yeom, Y.I., Fuhrmann, G., Ovitt, C.E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., and Scholer, H.R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881-894.
Zhang, C., Zhu, J., Zhang, J., Li, H., Zhao, Z., Liao, Y., Wang, X., Su, J., Sang, S., Yuan, X., et al. (2014). Neuroprotective and anti-apoptotic effects of valproic acid on adult rat cerebral cortex through ERK and Akt signaling pathway at acute phase of traumatic brain injury. Brain Research 1555, 1-9.
Zhang, H., and Wang, Z.Z. (2008). Mechanisms that mediate stem cell self-renewal and differentiation. Journal of cellular biochemistry 103, 709-718.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明